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We construct a C‘-algebralc formulation of the dynamics of a pair of mutually interacting quantum-mechanical
systems § and §,the former being finite and the latter infinite. Qur basic assumptions are that: (i) 8, when iso-
lated, satisfies the Dubin~Sewell dynamical axioms;(ii) the coupling between 8 and 8 is energetically bounded
and Spatlally localized;and (iii) the initial states of s and 8 are mutually uncorrelated, with $in an arbitrary
normal state and § in a Gibbs state. Qur formulation leads to a rigorous theory of (a) the dynamics of a finite
open system,i.e.,of a finite system (8) coupled to an “infinite reseryoir” (S) and of (b) the dynamics of an in-
finite system (S) drlven from equilibrium by a “signal generator” (§). As regards (a), we show that the state of
§ always remains normal, and we derive a generalized master equation (in an appropriate Banach space) govern-
ing its temporal evolutlon As regards (b), we show that the state of § always _corresponds to a (time-dependent)
density matrix in the representation space of the algebra of observables for 8, induced by the initial Gibbs state.
By formulating the linear part (appropriately defined) of the response of § to S we generalize the fluctuation—
dissipation theorem to infinite systems. Further,we show that the total effect of S on 8 reduces to that of a
“classical” time-dependent external force in cases where the initial state of S possesses certain coherence

properties similar to those of the Glauber type.

1. INTRODUCTION

The algebraic formulation of statistical mechanics
provides a rigorous mathematical basis for the study
of both finite and infinite systems (cf.Haag, Hugen-
holtz,and Winnink! (HHW), and Ruelle2). In this formu-
lation, the bounded observables of a physical system
correspond to self-adjoint elements of an appropriate
C*-algebra G, and the states of the system correspond
to positive normalized linear functionals on &. By the
Gel'fand~Naimark—-Segal (GNS) construction, each
state ¢ determines a cyclical *-representation Ty of
Gin a Hilbert space ¥,. Thus, ¢ is canénically associ-~
ated with an “island” of states 9, ={® o 7,/® is a nor-
mal state on 7 (@)}. Of particular 1mportance in stati-
stical mechamcs are the Gibbs states (cf.Ref.1) and
their associated islands.

The dynamics of an infinite quantum-mechanical
system may be formulated in terms of the dynamical
laws for finite systems, subject to supplementary
assumptions concerning the existence of certain
“infinite volume limits.” Thus, HHW have proposed
a set of “axioms” which lead to a description of time
translations in an infinite system as automorphisms
of its C*algebra G of observables. More recently,
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Dubin and Sewell3 (DS) have proposed a weaker set of
“axioms”, leading to the result that if ¢ is a Gibbs
state, then temporal evolution in the island g, corres-
ponds to automorphisms of the weak closure of 11¢((i'),
though not necessarily of @ itself. The advantages,
from a physical standpoint, of the latter axioms were
discussed in Ref. 3.

The present article will be concerned, for motives
that will be described below, with the study of the
dynamics of a composite quantum-mechanical sys-
tem S, formed by two mutually interacting systems

S and S, the former being finite and the latter infinite.
It is assumed that:

i) S satisfies the DS axioms, when uncoupled from §;

(ii) the interaction between S and § is energetically
bounded and spatially localized, in a sense made pre-
cise in Sec. 3 (the class of mteractlons considered is
wide enough to cover the cases where § and 8 interact
via forces between hard-core particles confined to
finite regions of space);and

(iii) the initial states of S and § are mutually uncor-
related, with S in an arbitrary normal state and Sin a
Gibbs state.

Copyright © 1972 by the American Institute of Physics
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We have two principal motives for studying the
dynamics of the composite system S. First,it leads to
a theory of the dynamics of a finite open system,i.e.,
of a finite system (S) coupled to an “infinite reservoir”
(S). Secondly, it enables us to formulate the dynamics
of an infinite system (§),driven from equilibrium by
the aeétion of a “signal generator” (8),

The material of this article will be presented as
follows. In Sec.2,we shall introduce our mathemati-
cal notation and shall derive three pertinent lemmas
concerning tensor products of W*-algebras. In Sec. 3,
we shall formulate our mathematical descriptions of
the systems 8,8, and S: This will include a statement
of the DS axioms,as applied to §.

In Sec. 4, we shall formulate the time-dependence of
the state of S, subject to the above assumptions (i)~
(iii). It will be shown (Corollary to Theorem 4.1)
that the state of § (induced by that of S) always re-
mains normal, and that the state of S8 always remains
in the island of the initial Gibbs state.

In Sec. 5, we shall adapt Zwanzig's? projective techni-
que so as to derive a generalized master equation
(GME) governing the evolution of the state of S. This
GME is actually similar to that obtained by Emch and
Sewell,5 by traditional methods that required a num-
ber of additional mathematical assumptions.

In Sec.6,we shall formulate the response of S to the
“driving force” generated by 8, in the case where the
interaction between S, and S corresponds to a (tensor)
product of observables for the two systems. By
extracting the linear part (appropriately defined) of
this response,we generalize the fluctuation—dissipa-
tion theorem to infinite systems. Further,we show
that the tofal effect of S on Sreduces to that of a
“classical” time-dependent external force in cases
where the initial state of S possesses certain coher-
ence properties similar to those of the Glauber type.6

In Section 7,we shall summarize our conclusions.

In the Appendix, we shall explicitly formulate a class
of states of § possessing the above-mentioned coher-
ence properties.

2. MATHEMATICAL PRELIMINARIES

In this section,we shall present our mathematical
notation, and then derive three lemmas concerning
tensor products of W*-algebras.

A. Notation

We employ the standard symbols C,R,R,,Z,Z, to
denote the complex plane, the real line,the positive
reals,the integers, and the positive integers, respec~
tively, If fis an $ {(or 8')-class function on R, in the
senge of Schwartz,we denote its Fourier transform

by f:

Flo) = (@m)~1/2 [T ate e (1), (2.1)
Let ® be a Banach space or algebra. We denote the
set of all bounded linear transformations of @ by £(®).

Let G be a C*algebra7 in a Hilbert space 3. We
denote the set of all (resp.normal,i.e.,ultraweakly
continuous) functionals on G by G*(resp.@y). The set
of all positive elements of @* (resp. @,) is denoted by
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@* (resp.@%). For arbitrary A € @ and Y € @*, we
shall sometimes denote YAA) by (y;A).

Note8: G, is a closed subspace of the Banach space
*

Definition 2.1: For x € ¥, we define the vector
functional w, on G by the formula w (4) = (x,Ax),
Vied.

Definition 2.2: Let o be a map from a set K into
£(@). We define the dual map ¢*: K = £(G* by
lo*(RYY;A) = (Y;0(R)A), VA€Q, YycG* k<K,
We recall now that the Kubo-Martin-Schwinger

(KMS) conditions may be defined as follows (cf.Ref.
1).

Definition 2.3: Let € @%,cR,and let Tbe a
homomorphism of R into AutG. For arbitraryA,B e Q,
let F{1) F @) be the functions of R defined by

FQ) (1) = w(BT(t)A) and F&)(t) = w((r(t)A)B), ¥t € R.

Then we say that y satisfies the KMS conditions with
respect to (7,8) if,for any A,B € @,(i) FQ}, FQ
are continuous functions on R, and (ii) the Fourier
transforms of these functions, considered as elements
of 8/, satisfy the relation
FQ(w) = F@) (w)eBy, VweR.

Note: 1t follows? from this definition that if ¢
satisfies the KMS conditions with respect to (7, 8),
then y is invariant under 7§ (R).

Definition 2. 4: Let Zbeaphysical system, charac-
terized by a C*-algebra G (of bounded observables),
together with the states and automorphisms of G. We
term T to be finite if it satisfies the following three
conditions:

(i) @ is a type-I factor;
(ii) @ is equipped with a one-parameter group {o(t)|

t e R} of inner automorphisms of @, corresponding to
time translations;and

(iii) for arbitrary 8 € R, there exists a unique normal
state on @, which satisfies the KMS conditions with
respect to (o,8).

Note: This definition may be seen to accord with
the usual requirements? of finiteness.

Note: We shall use the term “infinite system” in
the special sense of Ref. 1. Thus, we use the term to
signify more than a “system which is not finite, in the
sense of Def. 2, 4.”

Definition 2.5: Let G,, @, be W*-algebras®? in
Hilbert spaces ¥y, &,, respectively. We denote by
@, ® G, (resp.G; ® @,) the smallest W*(resp.C™)-
algebra generated by {4, ® A,|A € G ,A, € @y} in
the Hilbert space 3 ® ¥,.

Definition 2.6: Let {,¥, be normal linear func-
tionals on the W*-algebras @1, G,, respectively. Then
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there is a uniquel? element ¥ of (@; ® G@,)s for which
WA, ® Ay) = Y1 (ADW,(A,), VA €Qy, 4,ca,
We denote this functional ¥ by ¢{® ¥,.

Definition 2.7: Let 04,0, be normal (i.e.,ultra-
weakly continuous) homomorphisms of the W *~algebras
@4, @, onto WT-algebras ®,,®,, respectively. Then
there exists a unique!3 normal homomorphism ¢ of
@, ® Gy onto B; ® By, such that 0(4; ® A,) =0,(A4,)
® 0,(A,),VA, € Gy, A, € G,. We denote this
element o by 0 ® 4.

Definition 2.8: Let G, @, be W*-algebras. We
denote by @4 ® G, the closure, in the norm topology
of (G, ® G,)*, of the linear manifold

N
135 406 @ 10 € @y ¥ © Qg <),
1

B. Lemmas Concerning Tensor Products

Lemma 2.1: Let @, @, be W*-algebras in Hilbert
spaces &4, I , respectively. Then (@; ® G,) =
Gl* ® @2*. )

Proof: Since (@, ® @,)4 is a closed subspace of
(G, ® G,)* (cf. Note preceding Def. 2. 1), it follows
from Def. 2. 8 that Gy 4 ® Ggx C (G1 ® Gy)y.

On the other hand, (G, ® @,), is the strong closure,14

in (@; ® G,)*, of the linear manifold generated by the
vector functionals on @, ® @,. Hence, in order to
show that (@, ® G,) C @4 ® Gy, and thus to prove
the lemma, it suffices for us to show that the vector
functionals on @ ® G, all belong to G4 ® Ggx.

Let x € ; ® &,. Then x is the strong limit of a
sequence{xn}, each element of whichis a finite linear
combination of terms f ® g,withf € ¥;, g€ X,. It
follows from Defs. 2. 1, 2, 6, and 2. 8 that the vector
states {wxn} all belong to G4 ® Gy4. Further,by Def.
2.1,

fw, (A)— w A< AT x, —xl(lx, ] + lx0),
i VAe G, ® G,

Hence w, converges strongly to w, in (@, ® G,)*.
Thus, sinte {wxn} € G4 ® @,4,and since this latter
set is a closed subspace of (@; ® @,)*, it follows that
W, € Gpy ® Qg QED

Lemma 2.2: Let @, G, be W*-algebras and let
=0, ®Q,. Leta,: G*> G% and a,: G*~> G} be
defined by

@ v;AD=(Y;A,01), vyel* A €@, (2.2
and
<¢12‘!/;A2> = <‘J/;11 ®A2>, vy e ar, Az € Q,, (2.3

where [, 1, are the unit elements of @,@Q,, respect-
ively. Then a, (resp.a,) maps @, onto @,,(resp.Q,,).

Proof: We first note that the homomorphism of
G, into @,given by A, » 4, ® I,,isnormal. Henceby
Eq.(2.2),the image of @, under a, lies in Gy4. In
order to show that the map a, is surjective,let i/, be
an arbitrary element of @,,,and let Y ,(c G,,) have
the property that ¢ ,(7,;) = 1. Then y; ® Y, & Gy, and,
by Eq.(2.2),a,({4, ® ¥3) = . Since ¥, is an arbi-
trary element of @, , it follows immediately thata,
maps @, onfo @,,. Likewise,a, maps G, onto G,,.
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Lemma 2.3: Let G,,Q, be type-I factors. Let ¢,
{y @)} be elements of (@, ® @,)% such that limy ) (4)
=y(4), VAe@,;® @, asn—>® Theny'n
converges uniformly to y,on &; ® G,,asn— %,

Pyoof: We first note that,if ¥ were known to be
the w*-limit of ¥ {(») on @, ® @,,then the required
result would follow immediately from a lemma due
to Dell'Antonio.5 In fact, we shall show that Dell"
Antonio's demonstration of his lemma may be adap-
ted so as to yield a proof of the present lemma.

Since G4, @, are type-I factors, it follows16 that there
exist Hilbert spaces Xy, X, such that @, G,, 0y ®
G,, @ ® @, are algebraically isomorphic with £(X,),
L(K,), L(K,) ® £(X,),L(K,) ® £(K,), respectively.
Thus, it suffices to show that if ¢,{¢®} are elements
of (£(X,) ® £(X,))}, such that ¢ is the w*-limit,as

n — w,of ¢M onL(XK,) @ £(X,),then ¢ converges
uniformly to ¢ on £(X,) ® £(X,). Further,on consult-
ing the proof of Dell'Antonio's lemma, one sees that

it may be extended so as to prove the required uni-
form convergence of ¢, provided that the following
proposition17 is established: If f is an arbitrary vector
in X; ® X,,then the corresponding one-dimensional
projection operator E, lies in £(X,) ® L(XK,).

Now any vector fin X; ® X, is the strong limit of a
sequence { fn}, each element of which is a finite linear
combination of terms g ® k,with g € X,,and % € X,.
Thus,Efn € £(X,) ® (KX,). Further,

Il(Efn = E x| = =W UL0+ MDA, =71,
VxeX,®X,.

Hence E. is the norm limit of a sequence of elements
{E; } of the C*-algebra £(K,) ® £(X,);and therefore
n

E; belongs to this algebra. QED

3. THE MODEL

In this Section, we shall present our mathematical
description of the systems §,8, and S.

A. The System S

We assume that S is a finite system,in the sense of
Def. 2.4. Thus, we assume that the algebra of (bound-
ed) observables @ of this system is a type-/ factor
in a Hilbert space ¥. Time translations in 8§, when
isolated, are taken to correspond to a one-parameter
group {7(¢)|t € R} of inner automorphism of G unitari-
ly implemented in R by a strongly continuous repre-
sentation U of R:
(A = UNAU(—1) =A{), VAcq, tcR (3.1)
Note: Although we refer to S as a finite system,
we never actually use the assumption that this system
satisfies condition (iii) of Def.2.4.

B. The System S

We assume that S is an infinite system in the sense
of Ref.1. Thus,we assume that S may be specified in
terms of a sequence {S®} of finite systems, in the
sense of Def. 2.4, such that:

(i) For eachn € Z,,the algebra of observables
@), for S(»),is a type-I factor in a Hilbert space i,
this latter space being independent of #.

(ii) Each G(» is equipped with a one-parameter group

J. Math. Phys., Vol. 13, No. 8, August 1972
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of inner automorphisms {7)(¢) |t € R},corresponding
to time translations in §®. It is agsumed that this
group is unitarily implemented in % by a strongly
continuous representation U¢#) of R;
FNA = UWOATD(— 1) = A0)p), v A @™ ¢ c R,
(8.2)
(iii) For each B c R, andn € Z_,there exists a unique

normal state ¢> on 3™ which satisfies the KMS con-
ditions with respect to (7, B). This state corresponds
to the Gibbs state for §® at the inverse temperature B.

(iv) G is isotonic with respect ton (i.e., 3¢) D G
if n > m).

Havmg thus specified {S(»}, we define & to be YUsez,
G, ;and we define @to be the norm closure of @,
The C*-algebra @ is taken to be the algebra of obser-

vables for S. The subalgebras & of & may be re-
garded as algebras of observables for systems S®
occupying finite regions of “physical” space (cf.Ref.
1).

We shall employ the DS scheme to formulate the Gibbs
states for S,and the dynamics of S in the associated
islands of states. The DS axioms are

(1) limd, WMLy - -API(E,) exists VA, ..

q ﬁke@L,tl,...,tkeR,k<w,
an
(ii) lim lim <$(”) (K(f)(tl). . .ggn) ()

X AS!»”% tk z) (tk+l))

= lix£ %B(n)(g(:i)(t

n >

) A tk>A2n(tM>' A ),

VAL...,A,, €0, t,..., ., €R, R+1<w,

The principle consequences of these axioms may be

summarized as follows.

(a) There exists a unique state (1)3 on @ such that
¢B(A) = lim ¢<g>(A), VAe@,. (3.3)

n—>°0

Thus, $B is the Gibbs state for § at the inverse temp-

erature 8. By the GNS copstruction, this state jnduces

a *-representation ﬁﬁ of @ in a Hilbert space (}C s Wwith

cyclical vector {5, such that &) = (2, (7,(1Q,). We
shall denote the images of A( € A) and A under T4 by
AB, @B, respectively. We shall also denote the 1sland
of states associated with ¢, by Jg,i.e.,

Go={¥ 7 1¥ c (@)1, wl=1}.

(b) Let &, be the state on G} defined by

(’I;g(é) = (Qﬂs

Then there exists a homomorphism 74 of R into Aut
ar g, unitarily implemented in J¢; by a strongly con-
tinuous representation U, of R, such that Q; is invari-
ant under U;(R) and

}li_{&¢gn)(A£n)(t1). . .A}zn)(tk)) - ‘53@1.501)'

VA,..., A8, ty,...l,€R,

v Qe Gy (3.4)

° 'Ak,ﬁ (tk))y

B <o,
(3.5)
where

J. Math. Phys., Vol. 13, No. 8, August 1972

SCACCIATELLI,

SEWELL, WANDERLINGH

(DA (= T,t)7,(A) = U0)A,U,(— 1),
vAcd, teRr.

A, () =
(3.6)

(c) <I> satisfies the KMS conditions with respect to

(7 E,B)

In particular,we interpret (b) as signifying that time

translations in the island J; correspond to the group
B(R) of automorphisms of G .

Lemma 3.1: Let Ty, be the restriction of 7, to

(", Then 7, is a normal representation of G(* in
Iy

Proof: Let ¢B, resp ¢(m) with m > n) denote the
restriction of d)a(resp ¢ m)fto @‘n) Then it follows
from Eq. (3. 3) that ¢,,, = w*- 11m¢>('(;)l as m— ©,
Hence, since G¢») is a W *-algebra and since <1>(m) is
normal it follows from a theorem due to Sakall8 that
By 1, 18 normal.

Let {A } be a sequence of elements of the unit ball of
@(", which converges weakly to A. Let BI,B2 €@,

Then for m sufficiently large, {A I A Bl, and B2
Hence it follows from the def1n1t10ns of mg,
qbﬂ, ,and Q that

Bs1BEA, ~ A)B,) = (1B, 7y, A, — A)1(By)S),

vB,Byc&,. (3.7

As proved above, ¢ |, 18 normal, for all me Z

Hence, since A tends weakly to A in the unit ball of
(i(n) it follows that the left-hand side of Eq. (3.7)
tends to zero as ¥ > ©, Therefore, since (@L)QB
dense in JC it follows from Eq.(3.7) that %, (4, — A)
tends weakly to zero as ¥ —» ©. Thus,we have shown
that %, is weakly continuous in the unit ball of G%)
and, therefore, 19 is ultraweakly continuous,i.e.,nor-
mal, in %, 'QED

Lemma 3.2: Let ﬁ Bbe elements of au such
that for all n greater than some fixed ny( € Z,),
(d/dt)B(")(t) = B)(t), VteR. Then

w — (d/dt)B,(t) = B,(t), Yt € R.

Proof: Let Al,A € @ Thus,A,,A, € G for
m sufficiently large. Hence it follows from the given
equation of motion for B(n)( t) and from the normality
of ¢>(n) that

Z_ FMABGBDAL) = FrXAY B(n)(t) A), V> (mny).
Thus,
SPABONNA,) — opIATBA,)
, BT -
= [, dt; 6§ A BWE)A ), V> (mng).

Hence,by Eqgs. (3.4) and (3.5),

)Aa SQB)
= fo dt (A1 a2, ,B (¢ )Azﬁnﬂ)

(A, 59, (By(8) —

Since this last equation is yalid for all A1 A € @,,and
since nB((i )ﬂ is dense in 806,1t follows that

(FBs(t) — Bplg) = [ di,( f,BB(tl)g), Vige R,
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The required result follows directly from thig equa-
tion and the fact that the strong continuity of UB(t)
guarantees that of Bt).

C. The System S

We specify the composite system 8 in terms of a
sequence {8 = (§ + S™)} of finite systems,by a
procedure similar to that employed for S.

Let 3 be the completed tensor product x® 36, and let
an) @, @ be the algebras in X defined by @») = @ ®
=), @, = U, ., G{») and @ = the norm closure of
a +

L .

We take @, G {n) to be the algebras of observables for
S.8(n), respectively. If follows that the observables
for S (resp.S) may be represented as elements of S
by the injective mappings A - A ® I(resp.A —» I®A)
of @ (resp.@) into @.

QED

We assume that, for all » greater than some fixed n,
time translations of S{?) correspond to a one-para~-
meter group {7(?)(#)|¢ ¢ R} of inner automorphisms of
@), of the form

T(H)A = expli (H) + V)] - A exp[ — i (H® + V)],
vAcGW tecR, (3.8

where Vis a self-adjoint element of @02 and H() is
defined by

Tty® U(t) = exp(iH %), VtecR. (3.9

Note: The strong continuity of (7(/.‘) and U ()(t)

ensures that (f) ® U(¢) has an infinitesimal genera-
tor,and thus that Eq. (3. 9) provides a definition of
H®, Further, 7()(t),as defined by Eq. (3.8),is indeed
an inner automorphism of G(»), for the following rea-
son. Since 7(t), 7()(#) are inner automorphisms of
®,@ (), respectively, it follows that U(f) € G and U ®)(z)
€ G, Hence, by Eq. (3. 9), ¢i8 tc @) and therefore
the operator H® is affiliated to G{? [i.e.,it commutes
with the elements of (G (#)’]. Consequently, (H(? + V)
is also affiliated to @ (#) and therefore expi (H (") + V)¢
€ G, Thus,by eq.(3.8), 7¢?)(¢) is an inner automor-
phism of @ (),

The dynamics of S will be formulated in Sec. 4, subject
to prescribed initial conditions,as an appropriate
limit of that of S{(»), For the moment, we note that the
interaction V may be any self-adjoint element of @ ;.
Thus, the model is sufficiently general to include, for
example, local interactions between systems of parti-
cles with hard cores, as formulated by Robinson,20

D. The Representation 7,

Let ¢, be the completed tensor product ® ¥X;. By
Def.2.7 and Lemma_3.1,there exists a normal *-re-
presentation m), = I® 7, of @ in & ,, where [is the
identity map of Gonto U. Since Q¢ is isotonic with
respect ton and since &, is norm-dense in @, it fol-
lows that there exists a unique *-~-representation of

G in Jc,, whose restriction to A is M1 Vi e Z.. We
denote this representation of @ by m;. The images of
A( € @) and G under 7, will be denoted by G,,A,, res~
pectively. Thus,

~ n - -~ ~ ~ ~ A -~
a,é ~0® G'B”: {§1Ay®ﬂB(Ar) (AYE G,A_'_E @L ,N<°O}//.

Finally, we define J; to be the island of states of S
associated with 7g,1.e.,
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4., DYNAMICS OF S

We shall define the dynamics of S in terms of that of
{8} as follows. Let S evolve from an initial state
¢ in which § and §(» are mutually uncorrelated,
with § in an arbitrary normal state and 8¢ in the
(normal) Gibbs state ¢ i.e., (") = ¢ ® ¢{). Since
time translations in S correspond to the automor-
phisms 7)(R) of @7 or equivalently (cf.Def.2.2)
to the dual group 7{»*(R) of transformations of G{rX,
it follows that the state of S(») at time ¢ is 7(2* (¢)(¢
® ). Now it will be shown (Theorem 4.1) that the
assumptions of Sec. 3 imply that, for fixed &8 and ¢,
there exists a unique state ¢(¢) on @ such that

(@1);4) = Lm r@* ()¢ f);A), YA€ @, R,
(4.1)

Thus, we shall refer to ¢(f) as the state of S at time

¢, corresponding to the eyolution of that system from

an initial state in which S and S are mutually uncor-

related with S in the state ¢ and § in the state ¢,.

Theorvem 4.1: With the above definitions and
assumptions, there exists a group { 7,4(t)/¢ €R} of
spatial automorphisms of G such that Eq.(4.1) is
satisfied when

() = (13 (D98, o7, (4.2)

where 7F(¢) is the transformation of (Gg)*,dual to
74(t). Further, 74(R) is given explicitly by the formula

74()Q = exp[i(Hy + Vg 1] Qexp[ — i(Hy + VB)t],

VQedl, teR, (4.3)
where V = 7y (V) (in the notation specified in Sec. 3)
and Hy is defined by

U(t) ® U(6) = exp(iHyt), VieR. (4.4)
Before proving this theorem, we note that the following
corollary follows directly from the statement of the

theorem, together with Lemma 2. 2, and the definitions

of the islands g, , J;.

. Corollary: Let 5(t), $(t) be the states induced in
S, S, respectively,by ¢(f),i.e.,
($(0;4) = @@;Ael), vAec@, tcR (4.5
am(&nﬁ):@@ﬁbﬁx vAecd, teR @.5)
tTheg o(t) € I, (1) € §;,ana $(#) is normal for all
eR.

Our proof of Theorem 4.1 will be based on the next

three lemmas. Before presenting those lemmas, we
first introduce the following definition.

Definition 4.1: (i) For n € Z+,we define Tg‘) to be

the homomorphism of R into aut @) specified by

@) =Tty ® T@)t), VieR, nec Z. (4.6)

The image of A( € G () under 7$(¢) will be denoted
by A (8),i.e.,[using Egs. (3.1),(3.2),and (3.9)].
AW = 79()A = exp(i H Wt Arexp( — iHWY),

vAe @2 teR. (4.7
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(ii) We define 74, to be the homomorphism of R
into aut & ( = aut @ ® @j) specified by

Toplt) = T(8) @ 7,4(8), (4.8)

For A € @, the image of A, under 7, ﬂ(t) will be deno-~
ted by A4(t),i.e., [using Eqgs.(3.1),(3.6),and (4.4)]

ViecR.

Ag() = 75,(A; = exp(iH,t) A, exp( — iHyt),
VAc @, teR. 4.9
Lemma 4.1: With the above definitions and
assumptions,
lim (Y ®~¢B;i1k(n)(tk) AP
=W © 854, (t)...4,,)),
VU el;Ay,..., Al GBAW,

Eiyeesty €RE <o, (4.10)

Proof: LetAy,...,A, € U,cq A®@®, Then,by
choosing m sufficiently large, we can ensure that
Ay, ..., A, € 8@ Qm) Let GYY =
VTr A, 8 AlA, € 8,4, €@ N <« . Thenit

follows from Eqgs. (3.5).(3.6),and (4.6)~(4. 9) that
Eq.(4.10) is valid when 44, ...,4, € QY. Since this
latter algebra is norm dense in G ® & ("), the required
result follows by continuity. QED

Lemma 4.2: Let m be a fixed element of Z, ,and
let {A, },{t } be arbitrary sequences of elements of
@(m) R, respectively. For eachnc Z,,let {y "}, {¥}
be the sequences in G{g* (G3)} respectively, defined
by the following formulas:

v @ = (T*(ty) Y) @ P{n);
YO = wisfARE ) (AR (2,),

\I‘O = (?*(to) % ® &)B;‘I"r(') = ‘I’r’l(A:.B“r)(‘)Ar,ﬂ(tr»’
forvr >0, (4.12)

with { €@}, Then for each fixed » € Z,, ¢{» tends
uniformly to ¥, 7 ,0on G{m) asn—w,

forr > 0; (4.11)

Proof: 1t follows from the normality of the func-
tionals ¥ {®, ¥, and of the representation 7, ,,, of G0

(defined in Sec.3 D) that the restrictions of ¥ {® (for
n>m)and ¥, 7 to @™ are normal. Hence,in view
of Lemma 2. 3, it suffices for us to prove that, for

arbitrary choices of the sequences {4 },{t,} required

for the definitions of {y )} and {¥,},

Lm (Wi4) = (¥, ;4,), VAcGBEM, (4.13)
We shall establish this result by induction. For this
purpose we note that,in view of Lemma 4.1 and Eqgs,
(4.11) and (4.12),Eq. (4,13} is valid for 7 = 0;and,in
cases where A, € @ ® @{m) it is also valid for » = 1.
Hence, in order to prove the present lemma by induc-
tion, it suffices to establish the following proposition.
if, for arbitrary /€ Z_ U 0 and arbitrary choice of the
sequences {A4,},{t,} used for the definitions of {/(»}

and {g,},
@ Hm(w(a) = @,;4,), VAeq®am (4.14)
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and
(1) Lim (@ {n; BXaX)AB ()(t))= (¥, ; BR()A, B, (1)),

VA,Be @34 tcR, (4.15)

then
lim (e K* GXNAKOE)) = (8K (DA K1),
VAc Gp aMm, KcG@m, [cR. (4.16)

Now it follows from Lemma 2. 3 and the above assump-
tion (i) that ¢ {® tends uniformly and hence weakly to
¥, o T4 on G4, for all choices of the sequences {¢,},
{A,}. Further, it follows from Egs,(4.11), (4.12),and
the invariance2! of 3@, &, under 7(»*(R), 7}(R), re-
spectively, that (y{®;A) is invariant under the trans-
formation ¢y = t5— ¢, & = & + 2t (for j > 0),A
Aln)(#);and that (¥, ;A ) is invariant under £, = #, —
Lt = 4+ 2t (for j > 0),and A, — A(f). Hence

(i) implies that

%Lrgo(d/{”);A(")(t)} =(¥;A4,0), VAcam, teR.

(4.17)

In order to derive Eq. (4. 18) from (i) and (ii), we
choose an arbitrary element K of @< and introduce

a sequence {Ks} of normwise uniformly bounded ele-
ments of @ © @), which converges strongly to K as
s —w: The existence of such a sequence is guaran-
teed by Kaplansky's density theorem. We thenusethe
inequality

[ ) K NAKGE)) ~ (s K8 () A K ()] (4.18)

= KW, ;K5(DA K () — K* (DA K, 5 ()] (4.18a)
+ (Y RXGNAK D) — (¥, K% (DA K, ()]
(4.18b)

+ L o K* WX AK — K,) D)

+ gl (K*— KD DAK D () . (4.18¢)
Since K, tends strongly to K, it follows from the
normality of 7, the uniform boundedness of { || K i,
and the unitary implementation in 3; of the automor~
phism 7y4(f) that w-lim K j()AK () = K (DA K (8
as s — «, Hence, it follows from the normality of

¥, and the uniform boundedness of { K[|} that

lim term({4.18a) = 0. {4.19)
Further, it follows from Eq. (4. 16) that

lim term (4.18b) = 0. (4. 20)

70

Next we note that, since x,lzl(") is a positive element of
@ (), we may use the Schwarz inequality |(y(");
A1A2> | < w,l(n);AlApl/z W’z(")AzAz)l/zy vA A, €
Gin,
Thus,
term (4.18¢) = (Y {»;[(K* — K ¥)(K — K)]((1))1/2

X [(lpl(n); K* (n)(t)AA*Ks(n)(t» 1/2

+ (4,1(71); K*BX)AARK ()(2))y1/2],

Consequently, in view of the uniform boundedness of
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{ Ik} we can easily find a finite quality D, independ-
ent of [, s,and n, such that

term (4.18¢c) = Dy [(K* — K%5)(K — K ) (1)) V2,
4. 21)

Moreover, it follows from Eq. (4.17),Def. 4.1 (ii),and
the definition of 7, that

lim (@ 5((K* — K3) (K — K)) (1)

= (W3 T 0T g m((K* — KD(K — K))). (4.22)

In view of the normality of ¥, and 74,,,,the uniform
boundedness of {IlK_ll} and the strong convergence of
K_ to K, it follows that the right-hand side of Eq.
(4.22) tends to zero as s—», Hence Eqs. (4.21) and
(4.22) imply that

lim lim term (4.18¢) = 0. (4.23)
§—=00 p—>c0

Since term (4.18a) is independent of », it follows
from Eqs.{(4.18)~(4.20) and (4. 23) that

lim }li_r’l;lo term (4.18) = 0.
Since term (4.18) is independent of s, it follows that

it tends to zero as n — . Hence,assumptions (i) and
(ii) imply Eq. (4. 16). QED

Lemma 4.3: With the above definitions and
assumptions,

Lim & ® $§LAQE,)- - A{mX)
= (P ® 334, 4t - A1,4(,)),
vieQf, A....,A,c 0,
byt € R, B o,
Proof: LetA,,...,A, € @,. Then,for sufficiently
large m( € Z,),these elements of G all belong to G(™.

For each 4,,j = 1,...,k,we introduce a sequence
{4 iis } of normwise uniformly bounded elements of

@® @ which converges strongly to A; as s - ®. We
then use the inequality

| ® B APE) - AP (1))

— @B, A, 4t Ay 5D
= KT® $;A%) - - - AL, )

— (WD BA,, 4t Ay L] (4.24)

(4.24)

+ Ky s g Anplty) Ay gty

—Apap(t) A )] (4.24D)
4
+ ElKJ/ ® %n); Alg,ns)(tk)° . 'A?i)l,s (tj +1)
=
(A; —4; Y Xt)A@ (ty) AP . (4. 240)

Now, since {4, .} € & ® @™, it follows from Lemma
4.1 that

}‘i_)rgoterm (4.24a) = 0. (4.25)
Further, it follows from the normality of =g,,, and

¥ ® &, together with the strong convergence of A; g to
A; and the uniform boundedness of {I4; | [}, that
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lim term (4.24b) = 0. (4.26)
In order to treat term (4. 24c), we invoke the Schwartz
inequality

¥ ® $§;BBB )| = (U © ;B BH1/2
X (Y ® ¢f»; BYBY B, B2,

Applying this inequality to the case where B = Afn)(t,)
S AD) (), By = (A;— 4, )0(1)),and By = AR ()
-+« A®(t,), and using the definition of lp}n) given by Eq.

(4.11), we see that (for ¢, = 0)
summand in (4. 24¢)
=W (A — AT (A — A, (L) 22

XY ® ¢§");A$§',)s(tk)' : -A§"+)1 ,s(tj+1)

X Aj*£ ﬁ). s (tj i) 'Az(,'s')(tk» 1/2
Hence, in view of the uniform boundedness of { 14, I},
we can easily find a finite positive quantity L, indepen-
dent of n,7,and s, such that

summand in (4.24¢)< L{ ;b](_"l) ((AF — A )

x(A; — A; W)tz (4.27)

By Lemma 4. 2, we are now justified in assuming Eq.
(4.15) and thus in treating the inequality (4. 27) by the
method applied earlier to the inequality (4.21). Hence,

lim lim term (4.24c) = 0. (4.28)
§5300 R

Since term (4. 24b) is independent of #, it follows from
the inequalities (4. 20)~(4.26) and (4. 28) that

lim lim term (4.24) = 0.
§=2C0 n-—>0

Thus, since term (4.24) is independent of s, it tends to
Zero as n = «, QED

Pyoof of Theorem 4.1: Our proof of this theorem
will consist of two stages. First, we shall show that
75(t), defined by Eq.(4.3) as amapfrom @ into £(3C,),
is indeed an automorphism of @;. Secondly,we shall
show that ¢(t), defined by Eq. (4.2) in terms of this
automorphism, does satisfy Eq. (4.1).

Thus, we start by noting that, since Vg € £(%,), it
follows from Eqs. (4.3) and (4. 9) that Tﬁ(t) may be
expressed in terms of TOB(L‘) by the following inter-
action-representational formula (cf. Guenin22):

o [t £
T4(DA, = A1) +TZ:)1f0 dty [, 'dty
b
X for ' dtngltIng(t,_y)- -+ mg(t)A, (1),
VAe @, teR, (4.29)
where 75 is the map from R into £(A3) defined by
ns(Q =i [V3(#),Q)., V@ € G}, te R, (4.30)

and where the integrals in Eq.(4. 29) are strong limits
of Riemann sums. It follows from Eq. (4. 30) that the
norm of the summand in Eq. (4. 29) is majorized by
lAl(2]IVI|e])” /r! Thus Eq.(4.29) expresses 74(¢) as
the strong limit of a sequence of elements of G7 whose
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norms are uniformly bounded by Al exp(2)l V| ¢ ).
Since G is a W*-algebra and is therefore strongly
closed, it follows that TB(t) maps @, into ag. Further,
since this mapping is unitarily implemented in ¥y, it
follows that 7,(t) € Aut @;.

It remains for us to show that ¢(¢),as defined by Eq.
4. 2) satisfies Eq.(4.1). For this purpose, we note
that ¢> ®<I>B € (@), and, therefore,is strongly contin-
uous in any bounded region of @;. Thus, since Eq.
(4.29) expresses TB(t)A as a strong 1imit of elements

in such a region, it follows from that formula together
with Def. 2.2 and Eq. (4.2) that

00 t
(D(1;4) = (F & 8554, + Elfo dty -
=
ty— ~ -~
X[ dt® dy3mglt,) g (1)A,0),
VAed, teR. (4.31)
Similarly, it follows from Eqs.(3.8) and (4.'7) that

(TG ® ¢m);
+ }“_, f dty-

Ay =(d ® gfn); ALD)
f"‘l dt (3 ® gsnet,)- -

n(")(tl)A(n)(t)), VAcG, teR. (4.32)
where 7@ is the map from R into G®) defined by
1W(HA = i [V (), Al VAc@® tcR. (4.33)

Now by Lemma 4.3 and Eqgs. (4. 30), (4. 33),
hm<¢® ¢S") n(n) ) (n)(t )A(n)(t))

= (3® Byinglt,) me()A (),

VAe G;, ty,...,t,teR, r <, (4.34)
Further, it follows from Eq. (4. 33) that the modulus

of the summand in Eq. (4. 32) is majorized by |A| x

| vI~]|2t|7/»! and, therefore, the sum in that equation
converges uniformly with respect ton. Hence, Eq.
(4.1) follows directly from Egs. (4. 31), (4. 32),and
(4.34). QED

5. GENERALIZED MASTER EQUATION FOR S

In this Section, we shall derive a generalized master
equation (GME) governing the evolution of the state
of §, subject to the conditions of Sec.4. Under these
condltlons the time-dependent state &(t) of § will
always lie in 6 (by the Corollary to Theorem 4.1).
Our GME, whlch will be formulated in Theorem 5.1,
is an 1ntegro -differential equation,in G* ,for ¢(1).

(i) We define a map a (which exists

Definition 5.1:
,by the

by virtue of Lemma 2.2) of (@), onto G,
formula

(a¥;A)=W;Ae ), VAcG, ve (65), (5.1)
(ii) Wedefine amap v of @, into(G%), by the formula

yW=983, Vyecl,. (5.2)
(iii) We define 654 (c £((a5)4)) by the formula

Bgx = Igx — 7 °a, (5.3)
where I, is the unit operator in (Gg),.
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Note: It follows from these definitions that
a°8g, =0, (5.4)
Ogx ¥ =0, (5.5)
and 0,4 is a parallel projector,i.e.,0%, = 654. This

latter property enables us to adapt Zwanzig'sS.techni-
ques to the present situation.

Next we note that, since 7(R) is a group of spatial

automorphisms of G in %, it follows that the dual

group 7* (R) maps a, onto @, . Likewise the group
TX[R)(resp.7%,(R), 7 (R)) maps (G}), [resp.(Qf),,

)4 ] onto itself. Further, it follows from Eq. (4. 30)
that,fixed t € R, nﬂ(t) is an ultraweakly continuous
linear transformation of @3;and, consequently, the
dual transformation n}({) maps (G3), into (G%), .
These considerations permit one to make the follow~
ing definitions.

Definition 5.2: (i) We define 7, (R) to be the group
in £(@,) given by the restriction to 7%R) to G,*

(ii) We define 7, 4+(R) to be thegroup in JZ(((Z;;)*) given
by the restr1ct1on of 7¥(R) to (A})

(111) We define 7,,(R) [resp. 7,,4(R)] to be the group in
@;),) given by the restriction of T4R) [resp. 7§,(R)]
tO J3 (@5)s).

(iv) We define 7, to be the map from R into £((d5),)

such that, for ¢ € R,7,,(f) is the restriction of ng(f) to
@p

(V) We define the map G of R into £(@,) by the form-
ula.

Gty =acty,(f)ey, VteR. (5.6)
Thus, it follows from Egs, (4.2), (4.4),and (5. 6), to-
gether with Def.5.1,that ¢(¢) may be expressed in

the form
(1) = &, (1),

Lemma 5.1: (1) 7,(2) is strongly continuous with
respect to ¢ in £(G);and (ii) Tax(t), Togx (), and
=,‘(t) are strongly continuous with respect to ¢ in

J:?(@"m

Proof: (i) In view of the group property of 7.R), it
suffices for us to prove strong continuity at £ = 0.
Further, since @ is the norm closure of linear
combinations of vector functionals'4 on @, it suffices
to prove continuity of 7,(f) (at { = 0) on these latter
functionals.

Let &, be the vector functional on G corresponding
to x € 3. Then it follows from Eq.(3.1) and Defs.
(2.1),5.2 (i) that

VieR. (5.7)

G =2 1Al | U@x — =,
vAed, t €R.

Hence, in view of the strong continuity of U(t) it fol-

lows that -r*(t)w tends strongly to w, (in (i*) as

t = 0. Thus, F,.(R) is a strongly continuous group

in £(Gs). (11) The strong continuity of 7,4, (R) and

Top «(R) likewise follows from the fact that these
groups are unitarily implemented by strongly-con-

KTy (DD,
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tinuous groups in Further, it follows from Def.
5.2 (i) and Eqgs. (4. 9) and (4. 30) that g () = Topsl— 1)
X Ngx(0)Tgx(2), ¥V ¢ € R. Thus, the uniform bounded-
ness of [[7q,«(#)|l (= 1) and the strong continuity of

Ty !) ensure the strong continuity of 7, (). QED

It follows23 from this Lemma that the groups 7, (R),
Topk (R),and Tos (R) are generated by closed, densely
defined linear transformations of @,, (@”)*, and (Q3),,
respectively.

Definition 5.3: We denote the infinitesimal gen-
erators of T*(R) Tax(R), Top+(R) (i.e., the strong
derivatives of 7, (2), 754 ()T a4 (f) at £ = 0) by £, £,
£opx>and the domams of these generators by D,Dg,,
Doax,respectively.

Lemma 5.2: With the above definitions and assump-
tions, Dy, = D44 and

g = Eopr T M4 (0).

Proof: Let Q& GfF and ¥ € (Gf),. Then,following
the procedure used to derive Eq. (4 31), we obtain the
formula

(TEO%;Q =¢85 (w30 + 2 fo'dtl“'fot” a,
X(U5ng(t) 1 () (165 ()@

Hence, using Defs. 5.2 (iii), 5.2 (iv) and Eq. (4. 30}, we
obtain the inequality

‘”<(Tﬂt(t)t“ Igy) ¥ —

(TOB*(t) -1

Y _
/ 8 ¥ — nﬂ*(O)\If;Q>H
= (|13 4t (1) = m,s O

> zrltlv-1||V||r/m>||Qu.

r=2
Consequently, in view of the strong continuity of nﬂ*(t)
[Lemma 5.1 (ii)],

(s,(G3)s) — lim
Ipe)

(TB*(t) - (TOB* (t) - IB*

Ve (@),

(5.8)

Since nﬁ*(O) is bounded, and since Dyx, Dy, are the

domains?23 on which =17 54(t) — Tgx),t (T #(t) —

I,4), respectively, converge strongly as ¢ — 0,the re-

quired result follows from Eq.(5.8) and Def.5. 3.
QED

Corollary:

(i)  maps D, into Dys

(ii) a maps Dyy into SD*,

(iii) 634 maps D, into Dy, ;

(iv) G,(¢) maps D, into ﬂ)*, VtecR;

(v) a- goa* Y= §* on :D*’

(vi) Ogabopx = Eopxfpx = Ogxbopnps ON Dyy;and
(vii)a ° £gpubx = 0 0on Dy, .
Proof: (i) By Defs. 4.1 (ii), 5.1 (ii),5,2 (i), and

5.2 (iii), together with the invariance of q’a under
Tg«(R),

Topx( ¥ = (T (0 ©8,, V¢ c@, TeR. (5.9)
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Since ﬁ*, Dy g are the domains in which 7,(f),

Topx(!) are strongly differentiable, it follows from Eq.
(5.9) that, if d/c:D theny ¥ € Dopx (= Dy, by the
Lemma). Hence y: Dy = Dy

(ii) By Defs. 4.1 (ii),5.1 (i), 5.2 (i),and 5.2 (ii),
(Fo(Da¥;4) = (1o (D4 @ I),
vAc@, teR, ¥ e (GPy.  (5.10)

Let ¥ € Dgx( = Dggs). Then s — (d/dt) T ()Y =

Eype¥at ¢ =0,and hence,using Eq. (5.10),
(?* (t) - T*)
lim sup e aV — af ., VA
0 1Al 1. ]< t 0B¥ >'
‘ 1)y —I ~ o~
cim s (o0t g wid 0T, )| <o
-0 A1 t
(5.11)

Thus 7, (f)a¥ has a strong derivative ( = af ,,.¥) at
t =0, 1f ¥ €Dy . Hence a maps Dy, into Dy.

(iii) follows from (i), (ii),and Eq. (5. 3).

(iv) follows from (i) and (ii) together with Def.5.2
(iii) and the stability23 of Dg, under 7, (R).
(v

) It follows from Defs.4.1 (ii), 5.1 (1), 5.1 (ii),
5.2 (i)-(iii) and the invariance of &; under 7, R)
that _

a °T03*(t) °y = T*(t),

Hence by part (i) of this Corollary we may take the
strong derivative of Eq (5.12) on ZQ,& withthe result
that, using Def.5.3, a y =&, onD,, as re-
quired.

(vi) By Defs.4.1 (ii),5.1 (iii),and 5. 2 (iii),

VicR. (5.12)

*Egpx ©

0 5% TOB*(t) = TOB*(t)ea* :TOB*(t)GB*TOB*(t)gﬂ*’
VicR.

By part (iii) of this Corollary, we may differentiate
this equation with respect to t on Dy, (= Dyy).
Hence, by Def.5.3,

Baxbopr = S0pr0px = Ogxopabps ON Dyy,as required.

(vii) It follows from (vi) and Eq.(5.4) that,on D,

@ °8pubpn = a0y =0. QED
Lemma 5.3: Let
E1p¢ = Sppx T+ 93*775*(0)95*- (5.13)

Then there exists a unique one-parameter group
{718+ |t €R} (€ £(@})), whose infinitesimal gen-
erator is £ gy-

Proof: Let R(z;&,,4) be the resolvent operator
for £, g4(r = 0,1), w1th zeC,i.e.,

R(Z;gyﬁ*): ZI x grﬁ*)_ly

both sides of this equation being defined in the resol-
vent set of £ ..

forr=0o0r1, (5.14)

Since [7454(t)ll = 1, V¢ c R,it follows24 that

IIR(x;goa)ll =x1, VxeR,. (5.15)
Let x, be an element of R, which exceeds ||6;,7,4(0) X
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Opx l, this latter norm being finite since B+ and 71,,(0)
both belong to £((G4),). Then it follows from Eqs.
(5.13)—(5.15) that

)
[|R(x + xo;ﬁle*)H < ?0 HQB*T]B*(O)GB*”"(JC + xo)'(n+1)

=(x+ x5~ 654004 )" 1 =x"1, VxecR,.

(5.16)

Moreover, it follows from Eq.(5.14) that R(z + z;
£15x) = R(2;€ 3¢ — %ol 34), the resolvent operator for
£1g%x — %lgs. Thus,by Eqgs.(5.15) and (5. 16),

[R(x;£154— xolga) | = %71, Vx €R,.

By a classical theorem on semigroups,24 it follows
from this last inequality that (& 5, — x4 is the
generator of a uniquely defined one-parameter semi-
group {T,,(f) | t € R}, with s-1im T,,.(t) = Iz« as

t - + 0. Hence, defining 7% (1) = 723*(t)ex0t,we see
that £, ,, is the infinitesimal generator of the semi-
group fr ()|t € R}, with s-lim7§),(¢) = I, as
t—+0.

It remains for us to extend this semigroupinto a group.
For this purpose,we note that our result concerning
the generation of 7{}) (R,) by &, 5« followed from Eq.
(5.13) together with the facts that (i) £, is the gen-
erator of the group 7g+(R), (ii) I75a«(#) Il = 1,and (iii)
Gﬁ*nﬁ*(O) 0% is bounded. Now it follows from (i)-(iii)
that (i)’ — £,5« is the generator of the group {76'76)*0)
|t € R} defined by the formula T7§2«(f) = Toax(— 8,
(1)l 7§54 (DI =1, and (iii)’(— 8,41 54(0)0 54 ) is bounded.
Hence, by (i)’—(iii)’ and Eq.(5.13), we may apply to
— £ 154 Precisely the same treatment we used for £, 4.
In this way we obtain the result that — £, is the
generator of a unique one-parameter semigroup
1§ [te R}, with s-lim 7G4 () = I, as t = +0.

We now note that it follows from Eq.(5.13) and the
boundedness of 6447, x(0)6;x that the domain of ££,54
is Dyx. Hence T{#k(?) is strongly differentiable on
Dyx( = Dyps) for t > 0. Therefore, since £{y is the
generator of 7{4) (R), it follows that

s =L rRUOTRO) = RO = 0,
VteR,.

It follows from this equation that, since D, is dense
in (Gf), and since 7{#,(t) tends strongly to I, as
t = £ 0,then

0 (OTEUD = TR TN (8) = Iyx, YVECR.

Hence we may construct a one-parameter group
{71 a4 t € R} according to the definition

B EAGR
Tle*(t) = Igy, fort=0 g
'rg_g*( -1, fort<o0)

fort >0 /

It follows from this construction and from our defini-

tion of 7{§,(R,) that £ 4, is the generator of the group

Ty ax(R). QED
Theorem 5.1: With the above definitions and

assumptions, let ¢ € &,. Then H¢) lies in D, for all

t € R, and satisfies the GME:
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(5,8 = o) = T30 + [ dtyitt = 1§01,

.1
wher~e - (5.17)
Ex= G + a°T)ﬁ*(0)°'y (5.18)
and
) =a o nB*(O)TIB*(t)BB*nB*(O) oy, VtecR. (5.19)

Proof: Assume that § € D,. Then it follows from
Eq.(5.7), Lemma 5. 2,and Corollary (iv) that ¢(2) € D,,
ViecR.

In order to derive a GME for ¢(t), we define ¥ (), v, (t)
[€ (8)),] by the formulas

\Il(t) = TB*(t)'ya’r
and
Ty (1) = 0,,%(8),

VieR (5.20)

VieR, (5.21)

Hence, by Egs.(5.3),(5.6),(5.7),(5.20),and (5. 21),

3(t) = av(d), (5.22)
and N
¥(t) = % (1) + y (1), (5.23)

Since ¢ € Dy, it follows from Egs. (5. 20)—(5. 22) and

Lemma 5. 2, Corollary (i) that ¥(t), ¥, (/),and $(t) are
strongly differentiable with respect to ¢, for all ¢t € R.
Thus,by Eq.(5.20) and Def.5. 3,

" d
(s, (@) — ai U(8) = £gy ().
We convert this equation into a pair of simultaneous
differential equations for ¢(f) and ¥, (#) by operating
on it with @ and 6,,, respectively. Thus,using Eqs.
(5.21)-(5. 23),

(5,80 —L50) = atpuyd () + at, 4,0 (5.24

ViteR

ViteR.

and d N
(S’(G’B"))— d—t\pl(t) = GB*EB*‘I’I(t) + Bs*gﬁ*ye(t)'
(5.25)

Further, it follows from Lemma 5. 2, its Corollaries
(v)—(vii),and Eqgs.(5.3)=(5.5),(5.13),(5.18),and
(5. 21) that

a§5*7 = f*, agﬁ*\l,l(t) =a115*(0)‘1’1(t),
Gﬂ*ﬁﬁ*ﬁll(t) = ng*\I’l(t)’

6 g% Eﬁ*yt,;(t) = 95*"15*(0)‘}’.‘%0)-

In view of these relations, Eqs. (5. 24) and (5. 25) may
be re-expressed in the forms

and

= d o =
(5,8) = —- 80 = Tud(1) + angs (V1) (5. 26)
and

(s, (@5)) — %xvl(t) — £ B (8) = 6,41, (00 3(0).

Operating with 73x(— #) on this last equation and
using Lemma 5.3, we obtain

(S, (Qg)*) - dit(Tlﬁ*( - t)‘Ill(t))
= Tlﬂ*( - t)eﬂ*”lﬁ*(o)ya(t)-

Further, since 7,,(0) = I,,,it follows from Egs. (5.4),
(5.20),and (5. 21) that \IIIFO) = 0. Hence, using the
group property of 7,4, (R), we may integrate Eq.
(5.27) in the form

(5.27)
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G0 = (5, (0§ — [ dt 17y galt — £1)85,7 4 01y B(2y).

On substituting this formula for ¥, (t) into Eq. (5. 26),
we obtain the required GME, as glven by Eq.(5.17).
QED

6. RESPONSE OF S TO A MECHANICAL DRIVING
FORCE

A. The Response Functional §

Since S is coupled to S one may regard S as the
source of a “driving force which acts on§. Thetime-
dependent response to S to this force is given by the
state ¢(t), defined by Eq. (4.5). We shall formulate
certain basic properties of this response for cases
where V is of the form

V=XB®B, (6. 1)
where A€ R and B, Bare self-adjoint elements of G,
@, ,respectively. This form of V covers a consider-
able number of cases of physical interest.

Let § be the map from R X R X @ into C defined by
F(\, 1;4) = (p();4) (6.2)

Then § represents the response of S to the driving
force generated by S. In order to formulate the pro-
perties of & we introduce the following definitions.

v=AB® B’

Definition 6.1: (i) For s =+ 1, we define 7, to be the
map from R into £(&) given by

1-.(0A=i[BW,Al, n,(04d=[BW®),A],
Vﬁeé, teR, (6.3

where l'él(t)AE ¥(1)B, as in Eq.(3.1). (ii) Fors =+1,
we define 7, , to be the map from R into £(G}) given
by

-~

Mg, -1(0Q=i[B,(0,Q), 7, ,(nd =[B,(1),4l,,

v Qe Gy, teR, (6.4)

where EB (&) = 74(8) Bﬂ,as in Eq. (3.6).

Note: Tt follows from Defs.4.1 (ii), 6.1, together
with Eqs. (4. 30) and (6.1), that

e =i T 7 ,0Aen, 1]

VAcd Qe tcR. (6.5

In particular,

ns)(I ® Q) = tcR.

(6.6)
Definition 6.2: For ¢> c (i+ andn € Z_,we define

the map F, from {— 1,1}»"1 X R* into C by the
formulas

AB(D) ® i, 4(0Q, VQeay,

F() = ¢B(), VieR (6.7
and,forn> 1,
Fn(sz,,_.,sn;tl,.l.,tn)

=21 (n(4). . 7oy (1) B(ty)),

Vsg,...s, € {—=1,1}, t,,...,t €R. (6.8)
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1t will be seen from Eq.(6.9) (below) that the F, may
be regarded as “driving forces.”

1t follows now from Egs.(4. 5),(4. 31),(6. 2),and (6. 5)-
(6. 8) that the response functional ¥ may be expres-
sed in the following form:

T, 1;A4) = $p(A) + A [1dt Fy (1)@ g5m, (¢ )AB(t»
+ e 2 dt, [+at,
72227\7 82231:1 5,=t1 f 1f
Xftr-l th(Sz’.. ’sr’t ..-’t‘r)

X@g 3715 5, (1) g, (4075 -1 (DAY ,
VAc @, tcR, R, (6.9)

B. The Fluctuation—Dissipation Theorem

We shall now generalize the fluctuation-dissipation
theorem?25 to infinite systems. This theorem will
serve to express (3/a)F(Q,; A)X o (i.e., the linear
part of the response of S to S)m terms of spontaneous
fluctuations of S about its equilibrium states.

.. Definition 6.3: We define the functions K 3,Gg, from
@ x G x R into C by the formulas

-~ -~

K, (A, B0 =—id,(4,),B,)),
VA,

tcb

c8@,tcR (6.10)
and

Gy (A B;t) = 3, ([4,(1), B,1,). (6.11)
We also defmeK (A,B;.), G (A,B;.) to be the
Fourier transforms of K 54, B 9, G (4,B;.),in the
notation of Eq.(2.1); these functlons on R all being

3’ -class.

Theovem 6.1: With the above definitions and nota-

tions,
3 ~ t ~ A
@ == 50, 44)50 =f0 dt\Kg(A,Bjt — t))Fy(ty);
(6.12)
®) E A, B;w) = itanh(3pw)G, @, B; w),
VABe®, weR; (6.13)

(c) if A (like l?) is self-adjoint and if B satisfies the
assumptions of Lemma 3. 2,then

Im]?ﬂ (A\,ﬁ; w) :fB (w)ImEB (A‘)é; (U),

VAc@ weR, (6.14)
where
( w™Manh3fw, for w =0
g 8 , forw=20)

(d) If further (E,(0)G} E,(0))" is Abelian, where ,(0)

is the projector for the maximal subspace of JC that
is invariant under U (R), then

-~ o~

Ky(d,B;0) = (0T, @, Bjw), VAcG, weR.
(6.16)
Note: (a), (b), () constitute a generalized fluctua-~

tion-dissipation theorem,as applied to S. As regards
the supplementary assumption required for (d), one
sees that it is satisfied in either of the following im-~
portant cases:
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(1) ,is the only vector in &, that is invariant under
Us(R) (i.e.,®, is R-ergodic);

(ii) ég is R~Abelian, in the sense of Lanford and
Ruelle.26

Proof of Theorem 6.1: (a) It follows from Eqgs.
(6.3)~(6.5) and (6. 8) that the modulus of the coef-
ficient of A7 in Eq. (6. 9) is majorized by |4 I|(2]¢]x

Bl Bl)* /r! Thus,we may differentiate Eq.(6.9) term
by term with respect to . Hence, using Eq. (6.4),

2 2 . A B
0GR Lo =~ fotdth)ﬁ([Aﬂ(t),BB (t)] = VF(ty).
. ~ (6.17)

Since @, is invariant under Tg‘(R),it follows from Eq.

(6.10) that Eq.(6.17) is equivalent to the required
formula (6.12).

(b) Equation (6.13) follows directly from the appli~
cation of the KMS conditions for P, (cf.Def.2.3) to
our Def. 6.3 for K, G,.

(c) It follows from (b),together with Eq. (6. 15), Def.
6.3 and Lemma 3. 2 that

z‘w[I_{ﬁ(A,ﬁ;w) -fa(w)ﬁﬁ(ﬁ,fi;w)] =0, VwecR.

Since K (ff ,§ ;-yand G B({f ,B; *} are bounded functions
of £,it follows from this last equation that

K, (A,B;w) = f3 (WG, A, B;w) +g6(w), VYV c—:(R, )
6.18
where g is a constant with respect to w.

Let A, Bbe self-adjoint. Then it follows from Def.
6.3 that K, (4, B; w), G5 (A, B; w) are the complex
conjugates of I—(B (4,B; — w), EB(A,B;— w), respect-
ively. Hence by Eq. (6.18) and the fact that f; is an
even real-valued function on R, it follows that g is
real and, therefore,

ImI?B(ff,ﬁ;w) =fg (W) Imf}"ﬁ(ﬁ,é;w), YweER,

as required.

(d) Let {h.n} be a sequence of S-class functions on R,
whose Fourier transforms {hn} possess the following
properties:

) RO=1 vVreZ, (6.19)

(i) im7(w) =0, VwecR\0; (6.20)

n-~*c0
and (iii) there exists a finite N such that {%, (0)|<N,
vneZ,,» € R. Let {kﬂ} be the sequence of functions
on R defined by

B (@) = 7, (@, (0.

Then it follows from Eq.(6.15) that f; isa multiplier2?
in § and that |f,()l = 38, V w € R, Hence %} isa
set of $~-class functions which satisfies conditions
(i)~(iii). We shall denote by &, the function whose
Fourier transform is &, .

It follows now from Egs.{6.18), (6. 21),and the fact
that {r },{ } satisty property (i) that

g = [ du[Ry(d, B0k, () — G,(AB; W, ()],
i.e.,

(6.21)

J. Math. Phys., Vol. 13, No. 8, August 1872

SCACCIATELL],

SEWELL WANDERLINGH

g= [ dt[K; (A, B;t)n, (O — G,A,B; 1)k (1)],
Vn e Z,.
By Eqs.(3,6),(6.10),and (6. 11),and the invariance of
$2, under U,(R), this last equation may be written in
the form

g=—i [Cath, (0@, 4,0, (— )B, — B, U,(H4,)%,)
+ 2tk (0, (B Ty( — 0B, + B, T,(045)3),
Yrez,. (6.22)
Let {Es. }\} be the family of spectral projectors for

Us(R),ie., Uy (1) = [eiMdE, ,,the integral being taken
as the strong limit of the Riemann sums, Then

L2 arnnU,e g = [Zatn (0 (f_ - e*i“dge,x)
_ (2,,)1/2f_°:° h, (& NdE,

Hence, it follows from properties (i)-(iii) that

lim [ at k(00,6 o = (2m)1/2E4(0). (6.23)
Likewise, using Eqs. (6.15) and (6. 21),
im [ dtk,(00, () = 36(2m /26 ,(0).  (6.24)

Thus, we can now use Eqs. (6.23) and (6. 24) to equate
g to the limit,as n = ®, of the right-hand side of Eq.

{(6.22). Hence,using the fact that ﬁﬁ € EB (O)JZ’B ,
g =—i(2MY2(Q,,[E, (04 E,(0), E, (0B, E, (0)]_&,)

+ (2m)1/238(Qy, (B, (0A,E ,(0), E,(0) B, 55(0)],25 52)-)
6.25

Now it follows from Lemma 3.2 together with Eq.
(3.6) and the definition of E;(0) that,for all { € R,

E,(0)8, £,(0) = £, (0B,(0E, (0) = £ £, (05, (0E,(0)

d =, a =~
= S E(0B,E,(0) = 0.

Thus, the first inner product in Eq. (6.25) vanishes.
Further, the second inner product also vanishes in
the case where {E (0)3E, (0)}” is Abelian. Hence,

in this case,g = 0;and consequently Eq.{6.18) re-
duces to the required formula (6. 16). QED

Commeni: This theorem provides a relation be-
tween the “linear part” of the response of § to an
external force, on the one hand, and the correlation
function G; on the other. Since this latter function
depends on the spectrum of H, [generator of U, R)],
we see that the FD theorem provides a relationship
between the response of S to external forces, on the
one hand, and the spectrum of H, on the other. This
relationship could be of some significance for the
purpose of obtaining information,by experimental
means, on the spectrum of H,.

C. Classical Limit for §

We shall formulate’ conditions which suffice to ensure
that the response functional § reduces in an appropri-
ate limit to the response of 8 to a “classical” force
(suitably defined).
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Definition 6.4: We term ¢ to be a-quasicoherent
with respect to (B,7) if:

(i) (E,ﬁ are functions of a real-valued parameter a,
in which case we shall indicate the @ dependence of
¢, B, 5, F, by a suffix a;and

(ii) there exists a real-valued function F on R such
that
-~ o~ hied v
lim &,(B,(t)- - -B,(t,)) =1 F(t),
a0 j=1
Vigeoorty, ER, ¥<o,
Note: According to this definition,a-quasi coher-
ence is a weaker property than coherence,in the
sense used by Glauber?2: for the latter property re-
quires the factorization of ¢(B(¢;)---B(t,)) into the
product I1%_, (B (¢;)), without any limiting procedure.
We shall construct a class of ga-quasicoherent states
in the Appendix.

Theovem 6.2: _With the above definitions and
assumptions,lgt ¢ be an a-quasicoherent state with
respect to (B, 7). Then

lim §,(x,£;A)

a—-0
= &) + 2 @7 [lat, fadiyeo- [irrar,
r=1
X F(ty): - F(4) (g5, 1 (8- - 175 5 (£)A5(),
vAed, rtecR. (6.26)

Proof: _Assume that ais a-quasicoherent with re-
spect to (B,¥). Then it follows from Defs. (6.2) and
(6.4) that

Lm Fy () = F(1), (6.27)
a—0
and
lin;F,,a(sz, ceesSat)
_ F(t))---Ft)if s,=s3=-++ =5, =—1.
0 otherwise (6.28)

Consider now the form of Eq. (6. 9), with suffixes

a added to §,F,, &, B. The modulus of the coefficient
of A7 in this equation is still majorized by [All(2]¢]
x|IB |IBIl)7/r !; and thus the right-hand side of the equa-
tion converges uniformly with respect to a. The re-
quired result then follows trivially from Egs. (6. 9),
(6.27),and (6. 28). QED

Comment: Onecanre-express Eq.(6.26)inthe form

Lim 5,0, 54) = & (U (D4,03:(0),
a—
wheAre {f/;F tite R} is the set of unitary operators
in 3, defined by

d - 7 sy

- Upr(8) = i(Hy + F()Bg) Ug (1),
where I;ﬁ is the generator of (73(R). Thus, in the limit
a — 0,the effect of S on S1is that of a time-dependent
perturbation F(#)B, where F is a real-valued function
onR. Thus,S acts as the source of a “classical” force
on S inthe a-quasicoherent limit (@ = 0).

Uy £(0) = I,
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7. CONCLUSICN

Wehave constructed a C*-algebraic formulation of the
dynamics of a pair of coupled systems, of which one

(S) is finite and the other (S) infinite. This formulation

has been based on the physical assumptions (i)~-(iii),
specified in Sec. 1.

The principal consequences of these assumptions are
as follows.

(i) The dynamics of the Compound system (S + 9) is
given by Theorem 4.1. In particular (Corollary to
Theorem 4.1),the Salways remains normal and that
of S always remains in the island J4. This last result
thus exhibits some of the physical significance of the
concept of an “island of states.”

(ii) The evolution of S is given by the GME stated and
proved in Theorem 5.1. This GME may be regarded
as the generalization of the Liouville equation to open
systems. This GME should find natural applications
in the theories of irreversibility and ergodicity.

(iii) In cases where the S—S coupling is of the type
given by Eq. (6.1),the response of S to the driving
force generated by S corresponds to the functional &
[Eq.(6.7)]. The linear part of ¥ obeys a generaliza-
tion of the fluctuation theorem to infinite systems
(Theorem 6.1): Apart from its theoretical signifi~
cance, this theorem might have some empirical use-
fulness for reasons indicated in the Comment follow-
ing Theorem 6.1. Finally,in cases where the initial
state of S possesses the a-quasicoherent property
specified in Def. 6. 4, the effect of S on S reduces, in
the limit @ — 0, to that of a “classical” time-depen-
dent external force. Thus,the a-quasicoherence limit
corresponds to a classical limit.

ACKNOWLEDGMENT

One of us (G.L.S.) would like to express his apprecia-
tion to Professor D.Sette for the hospitality he recei-
ved at the Istituto di Fisica (Facoltd di Ingegneria) of
the University of Rome, where the collaboration lead-
ing to this article was carried out.

APPENDIX

We shall now construct an example of an a-quasi-
coherent state. It may be seen that the state will
correspond to that of a simple harmonic oscillator,
appropriately displaced from its mean equilibrium
configuration.

Let ﬁ/be a strongly continuous map from C into the
unitary operators in X, such that

W(2)W(z")=W(z + z) expsi(Imzz’), V z,2'€ C, (A1)
and N

w(0) =1. (A2)
Then W is a regular Weyl repres'gntation2 8 of the can-
onical commutation relations in JC. It follows from
Eq. (A1) that

Wizg)W(zp)- - - W(z )W(— z,)

~ l
= W2y + 2,5+ -+ z) expi 27(ImZ,z )
H m=l
1 -
+ 5 mznjzllm(zmzn)g ,
rr;<n
Y 25,2,...,4 € C. (A3)
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Assume now that @ is the W*-algebra generated by
{W(z)lz € C},and that the group FR)( c Aut Q) is
given by

F()W(z) = W(zeit), VteR, zcC. (A4)
By choosing W to be the Fock representation of the
Weyl algebra,we ensure?? that T(R) is a group of
spatial automorphisms of G, unitarily implemented

n & by a strongly continuous representation of R.
For a € R, we specify Ea( € @) by the formula

B,=a"1[ dkf(k/a)W () (A5)

where f is a continuous function, of class LMW on R,
and where the integral is the strong limit of Riemann
sums. We also define ¢,to be a normal state on G,
of the form

3. () = Y(Wlixo/a) (VW — ixo/a),
where x,(€ R\0) and x'/;(e é:) are independent of a.

It follows from Eqs.(3.1) and (A3)-(A6) that, for
1 <ew,

aa(éa(tl)' ¢ 'Ea(tl ))
=at [ de,
R

(A6)

kS (ky/a) - f (k/a)

X YW (et + --0 + k,e”l))
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ixy &
x eXP<—a——E E, costn>

n=1

E k"[ensm(t —t »

mm=1
m<n

i
X exp(-i
Hence,using a change of variables &, = ak,,
¢,,(Ba(t1)' B, (1))
l
= ledk1 - dk, f (%, )exp ixonzzzkncostn)

X @(ﬁ/(akleitl +oeee + akle“l))
mn=1

m tn )>'
m<n

Since W(0 (0) = Tand f & LW(R),it follows from the nor-
mality of ¢ and the strong continuity of W that the
application of Lebesgue's theorem to Eq. (A7) yields

l
X €xXp (%iaz 25 kRsin(t (A7)

Iim GaBy(t)) B, () = F(ty) -+ F(t),
Vt,...,t, € R, (A8)

where F(t) = f dkf (k)exp(ik cost), V¢ € R.

Thus,by Eq.(A8) and Def.6.4, ¢ is ana-quasicoher-
ent state with respect to (B T) as required.

1 R.Haag,N.M.Hugenholtz,and M, Winnink, Commun. Math. Phys.

5,215 (1967).

D.Ruelle, Statistical Mechanics (Benjamin, New York, 1969),

Chaps.6,7.

3 D.Dubin and G. L. Sewell, J. Math. Phys.11, 2990 (1970).

4 R.Zwanzig,J.Chem. Phys. 33,1339 (1960);also Lectures in Theo-

relical Physics (University of Colorado, Boulder, 1960), Vol. 3.

G.G.Emch and G. L. Sewell, J. Math. Phys. 9, 946 (1968).

R.Glauber, Phys.Rev. 130, 2529 (1963).

For a comprehensive treatment of C*-algebras, see J.Dixmier,

Les C* -algébres et leurs vepresentations (Gauthier-Villars,

Paris, 1964).

8 Cf.Ref.11,Chap.1.3.3, Theoréme 1.

9 Cf.M.Winnink, Cargese Lecture Notes, 1969,

10 Cf.the formulation of HHW (Ref. 1) for finite systems: see also
the discussion in Sec.I of the article by G.G.Emch, H.J. F.Knops,
and E.J. Verboven,J. Math. Phys. 11, 1655 (1970).

11 For a comprehensive treatment of W*-algebras (i.e., von Neu-
mann algebras), see J. Dixmier, Les algébres d'opévateurs dans
I'espace Hilbertien (Gauthier-Villars, Paris, 1969).

12 Cf Ref.11,Chap.1.4.8,Ex.6.

13 Cf.Ref.11,Chap.1.4.5, Proposition 2.

14 Cf Ref.11,Chap.1.3.3, Theoréme 1.

15 G, F.Dell'Antonio, Commun. Pure Appl. Math. 20,413 (1967),
Lemma 2.

[

[

~

J. Math. Phys., Vol. 13, No. 8, August 1972

16 Cf.Ref.11: Chap.1.8.2,Corollaire 3.

17 The essential point here is that the proposition implies that if
E, is an arbxtrary N-dimensional projector (N < ©}in ¥; ® X,,
then E, (£(X LK NE, €L(K,) @ £(K,).

183, Saka1 Proc Japa.n Acad. 33, 439 (1957), Proposmon 1. This
theorem is also proved by Dell Antonio, Ref. 15, Lemma 1.

19 That weak continuity in the unit ball of G implies normality of
nm also follows from Ref.11,Chap.1.4.3,Def.2 and Appendix II.

20 D.W.Robinson, Commun Math Phys. 16, 290 (1970).

21 That ¢r§"> <I> are stationary under T(")*(R) 72 (R) follows from the
fact that these states satisfy the KMS condltmns with regard to
(74, 8), (35, B), respectively (cf. Note following Ref. 2.3).

22 M. Guenin, Commun, Math. Phys. 3,151 (1966).

23 Cf. F.Riesz and B.Sz-Nagy, Func/zonal Analysis (Ungar,New
York, 1955), Chap. 10, Theorem in Sec.142.

24 Cf, Ref.23,Chap. 10, Theorem on p.403.

25 For formulation of the fluctuation—dissipation theorem for finite
systems, see, for example, R. Kubo, J. Phys. Soc.Japan 12,570
(1957),and W.Bernard and H.B.Callen,Rev.Mod. Phys. 31,1017
(1959).
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By developing an analogy between the Feynman path integral and contour integral representations of the special
functions, we obtain WKB formulas for barrier penetration from a path integral. We first show that there exists
for the path integral a notion of contour independence in the time parameter. We then select an appropriate
contour to describe the physical situation of barrier penetration and obtain asymptotic formulas from the func-
tion space integral. The method is interpreted as a path integral derivation of the complex ray description of
barrier penetration. In the last three sections we investigate several canonical problems of the theory of com-

plex rays with these path integral techniques.

1. INTRODUCTION

Many asymptotic formulas of quantum mechanics
have been derived from the Feynman path integral
(Refs. 1-6). However,formulas associated with bar-
rier penetration have not been obtained in this man-
ner. Here we obtain these “nonclassical” effects
from a path integral representation. Our method
may be viewed as an analogue in function space of
contour representations of the special functions. That
is,we perform an analytic continuation of the func-
tion space integral with respect to the time para-
meter and develop a notion of contour independence
in this parameter. Then,by selecting an appropriate
contour,we extract the asymptotic behavior of the
function space integral.

Consider the Green's function G for the one-dimen-

sional time independent Schriodinger equation

nz d2

— =— G{x,x'|E) + (E — V(1)) G(x,x' |E)= B5(x — x').

2m dx? (L1
1.1

G may be represented as a Fourier transform,
G{x,x'|E + i€) = —i f: dt exp|(i/7)

X (E + ie)t]K(x,t|x’,0), €>0, (1.2)
where K,the kernel of the time-dependent Schréd-

inger equation, is represented as a path integral,?

K(x,t1x",0) = [ Dx(+) exp{(i/m)S [x(-), t]},

x(+) € P(x,t|x’,0). (1.3)
Here P(x,t|x’,0) is the set of paths connecting the
space—time points (x’,0) and (x, ). S[x(-), t] is the
action functional of classical mechanics.

When x and x’ lie in the same classically allowed re-
gion of space,one may extract the asymptotic be-
havior of G (as # vanishes) directly from representa-
tion (1.2) and (1. 3). In this case the method of sta-
tionary phase in function space is applicable. How-
ever,when x and x’ do not lie in the same allowed
region, the method fails since no real, critical path

at energy E connects x and x'.

To treat this case we introduce an equivalent func-
tion space integral representation of G. This equi-
valent representation is based upon an explicit ana-
lytic continuation of K(x,#{x’,0) into the lower half ¢
plane by means of a function space integral. As will
be discussed in more detail later, existing path inte-
grals, valid in the lower half { plane, are not directly
applicable. In Sec. 2,in order to obtain a useful re-
presentation, we introduce a notion of the path inte-
gral being independent of contour in the { plane, and
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we show that the representations in question possess
this property. In Sec.3,we utilize this contour inde-
pendence by selecting a particular contour which is
appropriate te the problem at hand. From the func-
tion space integral along this contour,we extract the
asymptotic behavior of G.

Usually barrier penetration is not considered a semi-~
classical phenomena. Certainly it cannot be described
in terms of real classical paths at fixed energy, which
is the primary reason that the effect has not been
obtained in previous asymptotic evaluations of path
integrals.8 However, it is known?:10 that complex
valued solutions of Newton's equations do penetrate
forbidden regions. Further,if these complex rays

are used to construct semiclassical wavefunctions,
agreement with WKB calculations is obtained. It is
this complex ray description of barrier penetration
which we obtain from the path integral, as may be
seen from the final formula specialized to one bar-
rier,Eq.{(3.9). In fact the path integral provides the
most direct derivation of the complex ray formulas,
in that both the equation defining the dominant path
and the approximate Green's function are obtained
directly from an exact representation of G.

Complex ray methods, while useful in many specific
problems,1! have been plagued with mathematical
difficulties. For one,in the general case,no rule
exists which provides a rationale to select the para-
meter with respect to which the analytic continuation
is to be made. For quantum mechanics the path inte-
gral provides the rule. Our calculations show that the
time ¢ is the natural parameter.12 Secondly, the glo-
bal validity of complex ray methods is difficult to
establish. It is very unlikely that path integral me-
thods will soon answer the questions of global exis-
tence by providing error estimates accurate “in the
large.” Nevertheless, the path integral provides an
alternative view of the complex rays, a view based
upon extremely direct calculations. As such, it should
provide insight into these difficult problems. For this
reason we use our methods to study several “canoni-
cal problems” in the theory of complex rays;the lin-
ear potential (Sec.4),the parabolic barrier (Sec.5),
and the repulsive coulomb potential for the radial
Schrédinger equation (Sec.6). The last example is
included primarily to extend the theory to include the
radial Schrédinger equation.

In the first two examples there is a feature of parti-
cular interest,namely, integrands possessing critical
points which coalesce. In the linear case,when both
x and x' lie in the classically forbidden region, a pair
of such points produces the relative factor of

3 exp{3im) between the “direct” and “reflected”
terms, Eq. (4. 14). In the quadratic case,as E ap-
proaches the top of the barrier, an infinite number of
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critical points coalesce at infinity (Fig. 7),preventing
the approximation from being uniform.

The idea of an analytic continuation of the path inte-
gral with respect to time is not new. Our starting
point, Eq. (2. 1),was used by Babbitt!3 and by Feld-
manl4 in early proofs of the existence of the path
integral. However,to our knowledge,we are the first
to formulate this notion of the contour independence
of the Feynman path integral and to utilize this pro-
perty for calculational purposes. The present work
may be viewed as the first application of the “exis-
tence formulas” of Babbitt and Feldman.

While the general analogy between this work and con-
tour representations is striking, it does not cover the
specific details of the actual continuation procedure.
In fact,no natural analogue of this procedure exists
for classical, N-dimensional integrals. Such an ana-
logue would be the continuation of an integral such as
Jooe Jdxy dxyf(xy,...,x,) with respect to the
labeling indices (1,2,..., N). In function space this

labeling is continuous, making the entire procedure
possible.

2. PATH INDEPENDENCE OF THE
REPRESENTATIONS

In this section we define the basic representations
and develop the notion of contour independence for
these representations. Consider any point /4 in the
lower half complex ¢ plane. To define K{x,!, ix’,0),
it seems natural to partition into N subdivisions the
ray connecting the origin with ¢, (Fig. 1), and to con-
struct the path integral as a limit of N-fold integrals

, . mN \W/2 o 00
K(x,tolx ,0) = }JL% <2m~m > J_:oo Im dxy e dxy
0

i N /mN ity
X — —(x, —x,_1)2 = Vix.)— )|,
exp[ﬁ j§1<2t0( 3 %) ( ’)N>]

Xg=Ex'y Xy =X (2.1)
Certainly if V(-) is (real) continuous and bounded
below,the N-fold integral exists—convergence being
guaranteed by the Gaussian term. In fact for such
potentials Babbitt has proven that (2.1) is a valid
representation of K in the lower half / plane, and
Feldman has extended this class to include all poten-

im(t)
t plane

Re(t)—

to

FIG. 1. Partition of ray.
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tials which are Riemann approximable and bounded
below.15 He also established that the limit is inde-
pendent of the partition of the ray. In this paper we
consider the N-fold averaging together with the limit
on N as the definition of a function space integral and
denote it by

K(xytolxly 0) = fx(-)EP(x,tolx',O) 5)36(')

x exp{(i/B) S[x(+),{o]} (2.2)

In definition (2. 1) the variables of integration {x ].} are

real. This forces the class of paths P(x,t,|x’,0) to
be composed of real-valued functions along the ray,
that is

P(x,tolx',0) = {x(+) :ray = R | x(0) = x', () = x}.
(2.3)

However, this representation is not particularly suit-
able for asymptotic evaluation. The saddle point
method (in function space) indicates that, as % vani-
shes, certain critical paths should dominate the be-
havior of the integral. These critical paths are de-
fined by the variational problem,

6S[-x(')’to] 20) x(O) =x’7 X(to) =X, (2-4)
or equivalently by the two point boundary value pro-
blem,

d2x(T) av

m———r=——),

dr? dx
In general the solution x(+) of (2.5) will not be real
valued along the ray connecting the origin with 7.
[This may be easily seen by solving (2.5) in a simple
case such as the linear potential.] Thus,the critical
path %(+) will not be a member of the class P.

x(0) =x', xltg) =x. (2.5)

One's first thought is to modify representation (2. 2)
by enlarging the class P to include complex valued
paths. We are hesitant to do this,however,because of
the extreme convergence difficulties which would re-
sult.16 We prefer to replace the ray connecting the
origin and /, with a general rectifiable contour I': 7 =
7(s),s €[0,1], 7(0) =0, 7(1) =¢,. This replacement

is permissible because, as we will now show, there
exists a notion of contour independence. In Sec.3 we
show that the replacement is useful for asymptotic
evaluations.

Im(t)
t plane

Re (t)——»

T,
_—r

to

FIG. 2. A typical contour T'.
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If contour I' has decreasing imaginary part (Fig.2),

Im(7(sy)) <Im(7(sy)), s;> Sy, (2.6)
an N-fold partition of I' will certainly yield an N fold
convergent integral. The following simple lemma
makes it clear that the path integral exists along T,

actually being independent of T'.

For notational convenience we define the operators
Kt as

(K ) () = [ K, tlx', 0 yla)d's

ye L2R), Imt <0, (2.7)
and K% as
/ 00 o0
(K4 ¥) (x )—( m) e e [ g ey
i Y mN
x exp[ﬁ g(; (x, — %)% — Vix) £ )]w(xo),
¢ € L2(R), Imt=0, xy=nx. (2.8)

The operators K* form a holomorphic semigroup in
C-,the lower half ¢ plane union the real axis, and the
operators K4 are uniformly bounded (in N) by 1.17:18

Lemma: For any T and 7, such that 7,7, and
(7 — 7,) all lie in the lower half complex plane,

K'y = lim K} Ky 1y for all y € L2(R).
N-—=>x0
Pyoof: Consider two complex numbers 7 and 7y,

satisfying Im7 < 0, Im7,; < 0, and Im(7 — 77) <0.
Since KT is a holomorphic semigroup in C’;

K = KT, 2.9
Applying representation (2. 1), one obtains
X : (r-7)
K =(im K- (Hm Ky~ ™), (2.10)

where the limits are taken in the strong sense. The
operators KJ are uniformly bounded (in N) by 1.
Using the fact that the product of two strongly con-
vergent, uniformly bounded sequences of operators
in a Hilbert space is itself strongly convergent, con~
verging to the product of the limits, one concludes

K"y = Jim (K STy v e L2R). (2.11)

This lemma extends to finite products. Consider any
rectifiable contour I" possessing progerty (2. 6), and
select any polygonal approximation of I',with ver-
tices (19 =0, 74,..., Ty1, Ty = 1) lying upon T
The extension of the lemma applies, yielding

. K("'M""M-l)

. KI(VTM-TM‘I)].

Koy = K1KMW,

= lim [KPEE™ . (2.12)
N—=co
Since the same operator K ‘o is obtained for finer and
finer polygonal approximations, we may pass to the
limit., Thus, for contours I' satisfying (2. 6), we have
the notion of a path integral representation of K °
along I, along with the fact that such representations
actually are contour independent. As long as the path
integral exists for real /;,12:20 the above results
immediately extend to include contours I' satisfying

Im7(S;) = Im7(S,), S;>S,. 2.6

3. BARRIER PENETRATION FORMULAS

In this section, armed with this notion of contour in-
dependence, we define a contour I'" appropriate to the
problem of barrier penetration and extract from the
path integral along I' the asymptotic behavior.
Throughout this section we assume that V(- ) is smooth
enough to guarantee needed existence, uniqueness, and
analyticity properties (Appendix).

We consider Eq. (2. 5) for the critical path x(7) and
seek those contours in the ¢ plane along which the
analytic function x(7) has constant (in fact no) imagi-
nary part. To describe these contours, we first solve
the intitial value problem at energy £ = §; + i},

. W (x _
_\/_2 o dz[§— V()

As long as §; = 0, the branch point of the square root

lies off the real z axis. We restrict ourselves to

§; > 0 and, without loss of generality, fix x > x’,

Select that branch of the square root defined by

4(%—m+ng—vv+ﬁWjﬂ2
2

— V)2 + 5%]1/2>

172, z,x',x€R. (3.1)

(- V)12 =

(3.2)

b

where all radicals are positive. Under these restric-
tions, contours defined by (3. 1) have decreasing ima-
ginary parts (as ¥ increases from x’ to x).

Define D, a subset of the / plane, by
D={teC|t=Vm/2 :,dz (£ — V()]1/2;

%,x'52 € Ryx > x';

for some § = &, + i§;, £ > Of. (3.3)
Consider any ¢, € D. Define § = £(¢,) by

to="m72 [ dz [Eto) — V()72 (3.1
Further, define a contour I' by

T:7(®) = Vm/2 dz[E@ty) —V@R)]Y2. (3.1

T" satisfies (2.6) and defines %(7), a real-valued solu-
tion of (2.5). Since I' satisfies (2.6), the results of
Sec. 2 justify selecting it as a contour along which
path to integrate.

But now, by construction, the critical path of this
function space integral #(7) is real on T, hence, a
member of the class of paths P. Expanding the ac-
tion functional S[x(*),,] about £(-) while retaining
terms through second order, we approximate the path
integral by

K(x,tqlx",0) =~ Kix, 1,]x", 0)

where
13 [2(E) - v

x fP(O.tO 10.00 Dx(+)

asfi -0, (3.4)

K(x,tqlx’,0) = exp

J. Math. Phys., Vol. 13, No. 8, August 1972
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X expg—?— ft" [m(d—x>2 — a('r)xz}d'r%,

21 -0 dT

a('r)s (ﬂ) .
dx? %=x(1)

This path integral, being Gaussian, may be calculated
explicitly to yield

R(x,1]x7,0) =(

(8.5)

m )1/2‘ 928(x,141x’,0) l1/2
2min oxox’

x exp[(i/h) S (x,¢41x',0)],
S(rtola’,0) = [ dr Em@ﬁ)z - V(:’c(‘r))].
(3.6)

aT

- &=
X> X
FIG. 3. A typical barrier,
t plane | Im{1)
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Finally, we relate this calculation to the problem of
barrier penetration. Returning to Eq.(1.2) and the
case where no real classical path at energy E con-
nects x and x’, we deform the path of integration of
the Fourier transform to pass through the region D.
In this region we replace K with its asymptotic ap-
proximation (3.6),and find that the integrand which
results possesses a critieal point f ; in D ,namely

o =\/7;i [ az(s =112, 5 =E +ie, e>0.
(3.7)

The dominant behavior of G will be given by a neigh-
borhood of ¢, and may be calculated by the saddle
point method to yield

Gln,x'|B + 1) = ecsnmal(2) (28 )22 ]2
2/ \gxdx'/\ot§

x exp{(i/H) [(E + ie)lg + SII, S =S(x,t4lx’,0).
(

*

When (3. 8) is specialized to a single barrier (Fig. 3),
(3.7) is used to express ¢, in terms of £,and € is
set at zero, G becomes

Glx,x'|E) = —m[k(x)k(x")]"1/2 {exp(é— f:< Blx)dx _Hlii-

x [ > K(x)dx + : f ¥ k(x)dx)}
tg x>

Re(t)—=

FIG. 4. Region D with typical con-
tours ' and T, linear potential.
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where k(x) = + {2m[E — V(x)]}1/2,

K(x) = + {2m[V(x) — E]}1/2,

x <(xg) <(x,) <x'. (3.9)
Here the turning points are defined as x. and x.,
(Fig.4).

Notice that (3.9) contains the WKB barrier penetra-
tion factor, as it should. We have succeeded in ob-
taining a complex ray description of barrier penetra-
tion from the path integral. The entire calculation of
Sec.3isformal. Aswith all path integral calculations,
no estimate of the error has been made. Neverthe-
less, Egs.(3.1%),(6)—(9) provide explicit equations for
the complex ray and approximate amplitudes. While
we have restricted ourselves to one dimension, it is
reasonable to expect that the methods will generalize
to higher dimensions. There,of course,the formulas
will not be as explicit. We now apply these methods
to study several canonical problems in the theory of
complex rays, canonical because they are local ap-
proximations to many potentials. For these examples
we have explicitly verified that the formulas are
asymptotic to G.

4, LINEAR POTENTIAL
Let V(x) equal gx, g > 0. Further denote the turning

point by x4, xo = (E/g),and fix x and x’ satisfying
%’ <xg <x. In this case the region D (Fig.4) is the
intersection of the fourth quadrant with the interior
of the circle centered at the origin with radius 7:

r2 = (2m/g) (x — x') (4.1)
We remark that for / restricted to the boundary of
this circle,the energy £ for the solution of the classi-
cal Eqgs.(2.5) is real,while for points ¢ inside D,
Im§ > 0. For points ¢ in D, T is given by

I:7(x) = (2m/g2)V2[(§ —gx")V/2 — (§ — gh) /2],

244 2(x + x'
z%(imz L& (:‘n x)+(x—x’)2>. (4.2)

Along I',formula (3. 5) yields
1/2 ; Y
R(x,t|x’,0) =( " ) exp|:_2_<ﬁ x—x)2 _ &

2milit i \2 t 2
g2
x (x 4+ x) — —t3>} , teD., (4.3)
24m

Finally we apply (4. 3) in the approximation of the
Fourier tranform to obtain

Glx,x'| E) = —m[K(x)k(x")]1/2

exp(;_' S waax =L K(x)dx), (4.4)

where
K(x) = +[2m(gx — E)]1/2,
Kx') = +[2m(E — gx")]1/2, (4.5)

A similar calculation with x and x’ fixed satisfying
%o <x’ <xyields

Hl

G(x,x’|E) = — m[K(x)K(x")]1/2 exp (—;— _EK(x)dx) .

(4.6)

In this simple case it is instructive to verify these
formulas by actual application of the method of steep-
est descent. For the linear potential K,formula (3.5)
is exact for all ¢ in C~. [For any ¢ in C™ one need
only to calculate the N-fold integral (2. 1) explicitly
and take the limit to verify K equals K.] Fixing x’

< E/g < x,we consider the Fourier transform

, . 3 m \1/2 (o —(_Zt_
Glx,x |E+ze)=e3"/4<5;%> fo Y
x exp{(i/n) [(E + i€)t + S},

— 5 N2 243
s=mE=x02 g 4,y &8
2 t 2 24m

(4.7)

Except at the origin, the integrand is an analytic
function of {. It possesses four critical points

+(g2/m)12t = {[(E —gx") + (E — gx")? + €2)V/2]1/2
+i[— (E —gx’) + ((E —gx")2 + €2)1/2]1/2}
+{[(E —gx) + ((E — gx)2 + €2)1/2]1/2

+i[—(E —gx) + ((E — gx)2 + €2)/2]1/2} (4.8)

where all roots are taken to be positive. Of these,
denote the one in the fourth quadrant by ¢, and define
a contour y from the origin through ¢, to infinity by
the following conditions:

(1) Re[S(x,¢1x",0) + (E + ie)t]
= Re[S(x,1,1x",0) + (E + i€)ty] on v and

(2) v approaches the asymptote

Im({) = —(8)"1/2Re(t) as ¢ — o, (4.9)
The contour y is a line of steepest descent,to which
t plane

it} Reff)—

FIG. 5. Lines of constant Re(S + E!), linear potential, x’ < E/g < x.
Arrows denote direction of increasing Im(S + Et). ¢, is the critical
point,
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the path of integration may be deformed (Fig.5).
Along ¥y we calculate the integral by the method of
steepest descent.21,22 This simple calculation esta-
blishes that G is asymptotic to G, Eq.(4.4):

G(x,x'| E) = G(x,x’'| E) + O(7i%G),
0<86<3,ask—0. (4.10)

Expression (4.10) is not uniformly valid as x and x’
approach the turning point (E/g). In our framework,
the origin of the nonuniformity is that the critical
points “coalesce.” As x approaches (E/g) from above,
x' fixed, the complex conjugate pairs of critical points
approach the real axis, colliding when x = (E/g)23;as
x' approaches (E/g) from below, x fixed, those critical
points with identical real parts collide at the imagin-
ary axis;and as both x and x’ approach (E/g), all four
critical points collide at the origin. In these cases it
is unreasonable to expect any one member £, of a
colliding set to dominate. When two critical points
coalesce,both must be taken into account.24:25 We
turn now to a case where colliding critical points
play a particularly important role.

Fix x and x’ such that (E/g) < x’ < x. Equations (4.7)
and (4, 8) still apply. As shown in Fig. 6,the contour
¥ defined by conditions (4.9) now passes through both
critical points in C7,#,,and {;. Once again the path
of integration may be deformed to coincide with y.
Breaking y at ¢{j, we separate the Fourier transform
into two integrals

G(x,x'| E) = et31i)4 (m/2nuK)1/2 [I; + I}, (4.11)
where v 4
_ (edr (i
I = fyo /2 exp<h, (Et +S>> (4.12)
and
_od (i
.= 5 A exp(ﬁ (Bt +s>) (4.13)
t-plane
lm(t)T Re{t) —=
1, 9
/7

FIG. 6. Lines of constant Re(S + Et), linear potential, E/g < x’ < «x.
Arrows denote direction of increasing Im(S + Ef). {, and ¢, denote
the critical points.
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Applying the method of steepest descent to both [ 1
and I,, noticing that I, is only “one-half Gaussian,”
we obtain

Glx,x'| E)Y/2 = —m[K(x)K(x")~1/2 [exp <—— ;— f:/ K(x)dx)

elin)/2 1 rE/g _1_ X )]
+ g ey [ Kwax — - [ K

+ 0[71’5 exp(—;-‘i— ij(x)dx)] , 0<6<3.
(4.14)

For fixed E/g < x’ < x,the second term in (4. 14) is
exponentially small when compared with the first,
and Eq. (4. 6) yields the correct asymptotic behavior
of G. However, the second factor in (4. 14) must be
kept if the approximation is to be uniformly valid as
x' approaches the turning point E/g. As mentioned
above, two critical points coalesce and both contri-
bute to the asymptotic value of G.

The relative factor % exp(%in) between the two terms
in (4. 14) is particularly interesting. Seckler and Kel-
ler interpret this factor as the result of a loss of
“one half the wave” into the allowed region, together
with a phase change due to reflection from the turn-
ing point. In their work the factor arises due to the
boundary condition of a purely outgoing wave at (—©).
In our derivation,the 3 may be traced to the fact that
I, is only “one half a Gaussian,” while the ¢i"2 is
due to the rotation of y by ei™/2at ¢}.

Finally this example indicates that the path integral
representation may be extended beyond D, and that it
must be so extended if uniformly valid approxima-
tions are sought. Here K is exact for all f in C~ indi-
cating that the region D is somehow artificial. Noti-
cing that the critical point ¢§,lying outside of D, is
reached by a change in branches of the { versus E re-
lation,one is tempted to extend D by a switch of
branches. In fact,for the linear case,a candidate for
the contour I [satisfying conditions such as (2.6)]
does exist for points lying outside of D. However,as
shown in Fig. 5, it possesses an asymptote which
makes it necessary to tie together (—®) and (+%) in
some fashion. One way to accomplish this is to fol-
low Ty, also depicted in Fig.5. Since K' is a semi-
group in C7,it may be path integrated along Iy, the
critical path becoming real as M — + ©, In this way
it should be possible to extend the region D.

5. PARABOLIC BARRIER

Let V(x) = —3gx2, g > 0, denote the turning points by

x,=+HJ2TE[)/g,and fix x’ <x_ < x, <x. In this
case formula (3.9} yields

G(x,x'| E) = — m[k(x)k(x’)"1/2 exp%é [EI‘_ K(x)dx

+ ] ks + i|E|w<’§) 1’2} (5.1)

)

where

B(x) = + [2m(E + ;gx2)]1/2. (5.2)
Again it is instructive to verify this formula by the
method of steepest descent. K is exact for all ¢ in C™.
We consider the Fourier transform
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Glx,x'| E + i€) = et3niV4 (LM) M2 g
277 0

x {sinh[( g/m)1/2t]}-1/2 exp{(i/%) [(E + ie)t + Sltd?,

(5.3)
where
S = S(x,f]x,0)
= (3mg)/2{(x2 + x'2) coth[(g/m)1/2¢]
— 2xx’ cschf( g/m)1/2t]}, (5.4)

The integrand is an analytic function of ¢ with the ex-
ception of the points ¢ =inn(m/g)1/2, ne(0, +1,2,...).
As ¢ vanishes, the critical points are defined by /, =
tpti,p

t,r=02n+ Valm/g)v/2,

% sinh2((g/m)/2t )

= x2 + x'2 + 2xx’ cosh(Vg/m t,5). (5.5)
For each value of #,(5.5) admits four solutions (Fig.
n.

We now choose an appropriate contour y. This choice
is not uniguely determined, the only requirement be-
ing that one must bound the error along it. In the
fourth quadrant the two critical points for n = 1,

t. and {, in Fig. 8,lie closest to the real axis and

would be expected to dominate the integral. We de-
fine the first part of y as that line of constant

Re[E! + §] connecting the origin with /., along which
Im[E? + S} is monotonically decreasing from the
origin to . (Fig.8). From i, v is defined as the
line (Im¢) = —n(m/g)V/2 through ¢, on to infinity.
Notice that along this second portion of vy, Im{Et + 5]
is constant, and the method of stationary phase is ap-
plicable. Once again a standard calculation establish-
es that the path of integration may be deformed to
coincide with y.

Breaking y at f.,we separate the Fourier transform
into two integrals,

Glx,x"|E + i€) = e"3n¥/4 <M> 1/2{11 +1,f, (5.6)

2%
I = :: [sinh( & t)] e exp(ﬁl [(E +ie)t + s]),
(5.7)
and . . i s i '
L= [smh(/r;t)] exp(ﬁ-((E +ie + S)).
(5.8)

Calculating the first by the method of steepest des-
cent and the second by that of stationary phase,we
obtain

1 plane
=1 !m(t)
—_——————————® —» g WJ—%“' —
-t - > TWF—?- -“-—e >
—————————@ [ o 51@1- - -~
—_————¢ o~ 3#@7 - ”—————— FIG. 7. Critical points for
= parabolic barrier,
—_————— g >~ A?-L -—-e o—-—-»—————Rem x' <x.<x, <x. Arrows de-
note motion of critical points
[ S Y >3 _ﬂ\,?_-r -——e P e as E approaches the top of the
Lt barrier from below. “Outer”
_——— —>» . 3#@*“ - *—— e critical points coalesce at ®.
—_— ~—» _ 51@— + ~—e (2 -
—————e——— 8 [ ..71,-1_".‘;[.T l -“—e [ i
—_———————e *—p - 9#@ + -——e . -
———————— o—» -jlmT % 1t e -————
t plane
lmmfl Reft)—

FIG. 8. Lines of constant
Re(S + Et), parabolic poten-
tial,x’ < —~(2|E|/g)1/2 <
+(2[E|/9)V2 < x. Arrows
denote direction of increasing
Im(S + Et). i, and ¢, denote
the critical points.
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. . 2G6\1/2
I, = — eG¥/4 ex (—E—(Et + S) ; 7l [2(‘8‘.‘)
) o2 (et + 5)) Y 225

x sinh(‘/f;— t<>]_1$ 21+ o, )

0<6< 4,
and

Iy = e@nit exp('-;-(z‘:r< + S)) %(m) Hﬁ@)

at2

x sinh(/%k)]—ls e )
32s
|

) i 2
+ et exp — (Ef, + S o) | | —
¢inya (ﬁ ( )) 3( )U -

x sinh(/-g-t )]1€ Y2 v ome), 0<6<i.
m
(5.10)

(5.9)

Adding,we compute that G is asymptotic to G, Eq.

(5.1),

Glx,x" | E) = G(x,x"| EYy+0($G), 0<6<3. (5.11)
5.11

Here we have used {5.5) to express /, in terms of E.

This result may be interpreted as a particle travel~
ing in real time until it strikes the turning point
where its real time “freezes.” I then penetrates the
barrier by taking an excursion into complex time.
Upon striking the second turning point, its complex
time freezes, and it leaves the barrier with increas-
ing real time. Notice that the calculation establishes
that G depends only upon ¢, and not upon f.. (Physi-
cally one might have expected {. not to contribute
since it may be interpreted as arising from a motion
“pbackwards in real time” due to a change in branch
of the ¢ versus E relation.)26

Finally,we remark that G is not uniformly valid as
E vanishes, since one half of the critical points move
to infinity, Fig.8. The change of varible /' = 1/¢
establishes that the transformed integrand has a
countable number of critical points coalescing at the
origin. Certainly one member of this set, 31, does
not dominate the behavior of the integral. However,

!

Ur)
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other techniques?7 show the uniformly valid expan-
sion will depend upon a countable number of these
critical points. Since countable numbers of coales-
cing critical points arise in physical problems in-
volving resonances and “above barrier reflections,”
it may be necessary to understand such critical point
behavior in order to treat these problems with the
path integral.

6. TWO ADDITIONAL EXAMPLES

In this section we mention two additional potentials
for which the formula may be checked by other me-
thods. First,let V(x) = V,[cosh(ax)]2, o >0,

Vo ~ 0. Clearlyformula (3. 9) applies (x' is to the left)
of the barrier,x to the right).

Since in this case no closed form of K{x,?|x’,0) is
known, G may not be verified as directly as were the
preceding two examples. Nevertheless, the time-
independent Schrodinger equation in this potential
may be solved terms of hypergeometric functions,28
By using these to construct G, and then evaluating it
asymptotically as # vanishes,one can verify G. We
mention this only because this potential, due to its
behavior at infinity, may provide a better model for
above barrier reflection than the parabolic barrier.

Rather than present the details of this verification,

we prefer to consider an example involving the radial
Schrédinger equation. Let V{r) be a repulsive poten-
tial, and let the energy E be high enough that the effec-
tive potential [1(7 + 1)72])/(2m+2) + V(#) has only one
turning point vy, Fix#’ > 7y > . We seek the asymp-
totic behavior of G as % vanishes:

2 42 2
(— B2 92 | vy LW LA2 —-E) Gr,v|E, 1)
2m dy2 2mr2
=—d8lr—7r". (6.1)
Following Langer,2? we transform the singularity at
the origin to infinity by the change of variable » =
ex,

n2 d2 , -
<—-—2m ey +W(x)+L)g(x,x |E, L) = — &(x — x%),
(6.2)
t
Wix)

FIG.9. (a) Ul») =
(W1 + Va2 2mr2] + Vir),

-~ ¢

e
~
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(b) W(x) = [V(e*) — E)e2x.
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where
2 2
’)”:6"", 7'0:@“”0, L=L<l+}.) s
2m 2
Wix) =[V(e*) —Ele?*, and g=I(7)¥2G,
{6.3)

In order to place (6. 3) in a form suitable for path
integration, 30 we Fourier transform on the variable
L. The transform # satisfies

(ﬁz a2

P—— + W(x) —

]
7 —) glx,x" |E,A) =0
aA)g( ’ )
V (6.4)
}\n& Blx,x"|E,x) =8(x —x7), 2=0,2r<0,

and may be represented as a path integral,

g(x,x'lE,k) = fx(’)e.?(x.}\!xl,()) :Dx(.) exp(;—;s(x(')7x)>’

SG(-),0) = [ [}_m(@)z

2 aTt
g is then given by

—-W[x('r)]:ld’r. (6.5)

glx,x’|E, L) = é-fow dx exp (— éhL) x,x"|E, ).
(6. 6)

We seek to evaluate this “A-path” integral asymp-
totically as # vanishes, L fixed. The situation is sket~
ched in Fig.9,from which it is clear that there is no
real critical path. However, the technique of Sec.3
applies with A playing the role of time. In this case,
formula (3. 8) becomes

&x,x"|E, L) = m[K  (x)k  (x")]1/2

i (% 1 =
x exp(%- L k(i - fx0 Kw(x)dx), (6.7)
where

K, (x) =+ {2m[L + W(x)]}1/2, o
k(%)) = + {2m[~L —W(x")]} /2, '

Returning to the physical variables »,7’, and I, we
obtain

Glr,r’'|E, 1) =
exp(- i [ bar + L [ K(r)dr),
rr i %

m[K(r)k(r/)]-1/2

(6.77)

! !
Case(i):
X' / X (X —) l £
V(X) t (E)
Case(2):
I E—
V(X) (Xen)
g
. FIG. 10. Sketch f potential; d thei
Case {3): X X 7’§ x,x' |E) vs E relation egalsaes(f)n V(x‘;lr
g%, g > 0;case (2) V(x) = — $gx2, g > 0;
case (3): V(x) = — $gx2, g > 0;case (4):
Vix) = jgx% g >0,
V(%) (E)
Case{4):
X (X—»)
V(x)
o "/\i_\
{X—=)
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where
Ly 1/2
K(r) =+ [Zm (—E + V(r) + (1_2)_%2)] ,
r2
1 6.8’
{1+ 2)2ﬁ2>] 1/2’ (6.8

R(r’
2my'2

~—

= [Zm (E — V) —

For V(r) = g/r, g > 0,we have verified formula
(6.7') by solving (6.1) in terms of Whittaker func-
tions and then evaluating its asymptotic expansion.
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APPENDIX

Even for real ¢, the two-point boundary value pro-
blem (2. 5) may possess none,one, or several solu-
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tions.31 Which possibility occurs depends upon the
potential V,the boundary point to,and the boundary
values x and x’. For a given potential V and fixed x
and x’,a particularly direct way to understand the
situation is to solve the initial value problem at
energy E for the time of flight / between x and x’. If
one then plots the 1V, E relation, intersections of this
relation with the line ¢ = ¢ count the multiplicity .of
solutions of (2.5). (Intersections of the relation with
the line E = E, count the times the solution crosses
the point x.) It is amusing to sketch the tV,E rela-
tionship for several simple potentials (Fig. 10).

Note added in proof: Since this work was submitted
Karl Freed3! has published results on barrier pene-
tration obtained by an analytic continuation of the sum
over classical paths. His approach, which is similar
to one we employed earlier,32 does not continue the
function space integral, but rather its asymptotic
approximation.
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An 0(2, 1) x O(3) Solution to a Generalized Quantum Mechanical Kepler Problem
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Physics Depaviment, University of Canterbury, Clirisichuvch, New Zealand
(Received 4 January 1971)
A differential equation directly related to the generalized Kepler equation of Infeld and Hull is solved in an
0(2, 1) X 0(3) group scheme. This equation contains as special cases the Schridinger, Klein—~Gordon, and Dirac
(two forms) hydrogen atoms. A generalized Pasternack and Sternheimer selection rule exists and some matrix

elements can be evaluated group theoretically.

I. INTRODUCTION

In an earlier paper! hereafter written as I, the author
examined the nonrelativistic hydrogen atom according
to the group scheme O(4, 2) © 0(2, 1) X O(3) of Barut
and Kleinert2? and was able to give a group theoretical
derivation of the selection rule of Pasternack and
Sternheimer3 on radial matrix elements. Here the
method is used on a more general differential equa-
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tion directly related to the generalized Kepler equa-
tion of Infeld and Hull.¢ This allows a unified treat-
ment of all quantum mechanical Kepler problems in
an 0(2, 1) X O(3) scheme, since the Schridinger,
Klein-Gordon, and Dirac hydrogen atoms, the latter
diagonalized in the usual £ scheme (see, for instance,
Bethe and Salpeter5) or the S scheme of Biedenharn,6
are special cases of this equation.
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GENERALIZED QUANTUM MECHANICAL KEPLER PROBLEM

As in the Schrodinger case if v is the 0(2) quantum
number of the radial wavefunction in the basis
0(2,1) @ 0(2), thenr*D, . .k, q integers, is propor-
tional to the gth componeng of a tensor operator.
Here D, is a dilatation operator defined such that
D, f(x) = flax). A generalized Pasternack and Stern-
heimer selection rule exists and matrix elements
diagonal in the O(2) quantum number can be derived
group theoretically.

Crubellier and Feneuille? have used the Infeld and
Hull generalized Kepler equation to generalize Arm-
strong's8 0(2, 1) treatment of the nonrelativistic
hydrogen atom to the 2 Dirac atom. The method in
this paper differs from that of Crubellier and
Feneuille? who introduced a nonphysical two variable
wavefunction. Here dilatation operators and one vari-
able physical wavefunctions are used.

II. GROUP STRUCTURE OF THE GENERALISED
KEPLER EQUATION

Consider the equation

(Vz _ =Dl +r+1) 22 Z—2>u(p9<p) =0. (1
p? p v

A here is a monotonic function of /, where [ and v — )
are integers, Z is the charge on the nucleus. This
separates in the usual manner giving the solution

u = RM}p)YH60),

where Y. (6¢) is a spherical harmonic and R}(p) sat-
isfies the radial equation

(dz 2d 22 Z2 Axr+1)

R ST . 2 >R,),‘=0, (2)

dp2 pdp p w2 p2

which is apart from minor variations of the general-
ized Kepler equation of Infeld and Hull.4 A solution
to (2) is

. 2Zp\*; oae1 (22p
R,)I‘ = N,\ue ZP/N<~17£) Lg_)\)\}l(—y ), (3)
a1 (220 ;
where L2241, \= =] is a generalized Laguerre poly-
nomial defined by

. S Tla+b+ 1) xm
Lf(x) =n§ nj(ba_n)!ﬁa +n+ 1)

We have
[ R3RYp%dp = 5, 4

which requires

__2_<ZS(V— A — 1)!>1/2.
M\ T+ A+ 1)

We now take the quantities
K,=%221)p
+= "\ vl (xua/axy Fx, v+ 1) (5)
and Ky = v under the inner product,
00 P vy’
Jo [ RABAERY VY, T dx, 40 = SN0 (10)

=8(w)8(I1)6 ("), (6)
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since X is a monotonic function of /. Here
x, = Zp/v and dQ = sinfgdbdg.

»:1 18 a dilatation operator defined such

Asinl, D
”6 = f{ap), which implies that

that D, f(p
D, f(x,) = flx,,).
This gives

K, RA=[(w* 1)1z 1)]Y2R),,,
K,R) = vR},
and

oo v3
Sy S RAVEXIK KRV —ngx"dﬂ

00
= fo fQ Rl);\Ynl;xg[Du—l/v(xv-l /9%, — Xy-1 + V)

X Dy/u—l(xua/axu +x,—v+1

- Dv+1/u(xu+1 0/9x, + X, V)
X Dyyy1(Eyoson =%,V +1)RAYA(v3/Z3)dx,dQ
y3
=J, J RIvix3- A IRYY,}——dx,dQ.

Similarly [K K, |=+ K,.

Hence as in I, since the ¥ form a basis for a repre-
sentation of O(3), the wavefunctions R)Y! for fixed m
form the basis for a representation of the group
0(2,1) x 0(3). We note the important point that in
this scheme, it is the 0(2, 1) x 0(3) states |Avm) for
fixed m and not the O(2, 1) states |Av) which form the
basis of the Hilbert space. In this physical realization
the radial wavefunctions R} alone are not orthogonal
with respect to A.

Following I, we find the eigenvalues of the Casimir
invariant

G =K% :K,K_+K_K,)

tobe A(A + 1), and hence the wavefunctions R} ¥} for
fixed m for a basis for the representation D{ﬂ of
0(2,1) and D! of 0O(3).

Note that Eq. (2) is in fact equivalent to GR} =

A(A + 1)R) and hence is very similar to a type B
Infeld and Hull factorization,4 with K, acting as the
step upstep down operators.

Four special cases are considered by specifying A
and p. The radial equations become

(1) Schridinger hydrogen atom p = 7, = [,
(2) Klein-Gordon “hydrogen atom” p =7,
A=—3+[(+ 32— Z202]V2,

(3) £ Dirac hydrogen atom p = ar where a = puea/n,
¢ mass of nucleus and

272 -1/2
€=(1+ @z ) , A= (k2 _a2z2)V2

n + A)2
(4) Biedenharn's® S Dirac hydrogen atom. In this
case we have two iterated second order equations
and p = 7,

A=+ (2 — Z202)V2 _ L 4 L gon(k).
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The representation structures hence derived are in
agreement with those given by Bacry and Richard,®
Barut and Bornzinl® and Lanik.11

III. TENSOR OPERATORS AND THE RACAH
ALGEBRA

Having established our formalism the extension of I
to this more general case is straightforward. First
we consider the commutation relations of the 0(2, 1)
generators with the quantity (p*/(v + ¢q)*1)D

. v/v+q
Al (8¢), k and q integers, where

AL(09)YL = YL

and find that it transforms according to the gth com-
ponent of a tensor operator whose representation is

of finite dimension equal to — 22 — 3 if k< — 2 and

is labeled D, , and of finite dimension and reducible
but not fully reducible if 2 > — 2. This representation
is labeled D;,,. Both of these representations are
nonunitary since the eigenvalues of K-K, are not posi-
tive definite.12

As in 1 the Wigner-Eckart theorem holds so
vm | TE N vm) = AITA) C 22,

where C}; ,f,)) is an 0(2, 1) Clebsch—Gordan coefficient.
In I the representations were characterized by in-
tegers only; however, the derivation of the Clebsch-
Gordan coefficients in this case is unchanged except
for the replacement of factorials by gamma functions
at the appropriate places. Binomial identities used in
their derivation are still applicable since the addition
theorem for binomial coefficients, namely

() (220)= ().

where

a I'(a+1)
(b)zr‘(b+1)(a~b+1)

holds for all values of 2, and k.

We recall from I that the technique for deriving
Clebsch—-Gordan coefficients due to van de Waerden13
and Bargmannl!4 requires the representation states
be realized by normalized multispinors N,,£%7%. We
then form an invariant coupling of two representa-
tions and a contragradient representation giving Eq.
(12) of I, namely

®,0,¢ Qi+my  -m
C 1*273 N 1 1 1 1
ml"Z‘>gm3 m, m, mg 1'£1 nl

T P RS

6hokoks =
(6)
Here the §; are the three determinantal invariants

0y = E3nq — £1735
03 = &1y — £91;.

6, = §2n3 — §3n29

This implies

k2 +k3:2¢1, k3 +k1=2¢2, k2 +k3=2q>3 (7
or equivalently
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By=0y +8;—®;, k,=0,+%, —3,,

k3 :fI>1+<I>2—¢I>3. (8)

Expanding the left hand-side of (6’) gives

k -p+qg+7r -7+ -g+7 +7
)

par
Ryt Ra=D-7 o Ryt ky-p-7
X pattts 532* 1~p ngﬂl (9

In order that the correct representations are coupled,
we require 2, and 2, to be positive integers. This
means that £,, £,, and 73 are bounded below and 7, is
bounded above as required. Then by (7),®, is a posi-
tive integer. The selection rule for negative £ follows
from (8),

P, + P, —P;=k;20
P, + &3 —®;=k320 and &,20

implies 0 < @, < [®; — &, /.

Substituting
e,=—21—-1 &;=—N -1, &, =—k—-2=5-2
gives

2<s < |a—a| + 1.

Comparing coefficients between (6’) and (9) now gives
the unnormalized Clebsch—Gordan coefficients. To
normalize an orthogonality condition is required.
This is derived by closer consideration of the direct
product state | Av; kq), where the state |kg) corres-
ponds to the tensor D,,,,, Af,. The I quantum num-
bers have been omitted as being unimportant. The
set of states |Av) form a basis for the unitary repre-
sentation D{, ,, so in this basis K = K under the
inner product (A’v’|Av) = 6,,,0,,,. However, the set
|kg) does not form a unitary representation, so if we
demand that K = K ; in the direct product space, we
must define the inner product in this basis to be

k'q'|kq) = (—1)95(qq’).

This is so since

R'q’|Kkq) =5 [k q)k g+ 1)]VR'q'|kg)  (10)
from I,Sec. V.
So (10) equals
F— 1)k 7 q)k £ g2 1)]V2 = (K k'q |kg), (11)

i.e., Kg: K; .

Now if |av) =Z)y,q C,},’kﬁlh’u’;kq) ,takil_lg the inner
product with {kq; > "v"| gives as the required ortho-
gonality condition

2ICLEM CT AR (— 1)2 = B(AT)E(V V).

vqu’ vqu!
vq

(12)

Finally then
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c,\,@)u —

1111

vqut

Tx + X — &)

(F(v — AT + )T + 2)(—k —2— q)!>1/2

'y + 2+ 1T — A%k — 2 + ¢)!

vmd M —V TV (R
e )

+ ! +)\—t><>\+v> B> _ 39
VoA t )

“ 1)M<r(>a —A—k— LA+ N +k+ TR —N —k — 1))1/2

(13a)

N A7 I‘(A-—A'+k+3)r‘(x'+u'+1)2 TE+v —A—t+1) -,
Cogor = *+1+4q)! TE+3+0—v +0HOT + 0 — 1+ 1T =2 — Ty — 1 — D!
k<s—2 k+g=0. {13b)

In the second case,k + ¢ < 0 has not been considered
as the case ¢ = 0 is of most interest.

IV. MATRIX ELEMENTS

To complete this paper the reduced matrix elements
for the generalized Kepler problem are derived.
This is done by considering the matrix element
A+ 1 TEI+ 1) =Ch, & WITEDNY, = .
Since LZ!*1 is a constant, the integral becomes a sum

j

1 TOA+A+E+3Trr—2"—1)
(2z)*% (x + 1)

¥

: _1
WiTHE = 5

or
TA+X +k +3)

—

of integrals of the form
0 . b b+l
fO e b1y = T(b + 1)/a ’

provided that 8 > — 1, i.e., provided that A + X’ + & +
2> — 1. Substituting for

A kA
c)\+1 0 A+l

from (13) gives

E<—2, (14a)

11
2 (2Z)k(r'(x —A—E—-DI'(x — X

To illustrate this technique, we shall derive a matrix
element for the # Dirac hydrogen atom important in
the theory of hyperfine structure.5 Using the nota-
tion of Bethe and Salpeter,® we note first that

x1 = (€a/2Z)V2(1/2)[ly 5 + v, Nk — )Y/ 2pR)-1

+ {yy — v Nek +y)1/2pRY]
and
x2= (€a/2Z)V2(1/2y)[(yy — v, )k —y)/2pR}1

+ (72 + 'yl)(ék + ';/)1/2pR3’],
where
y, =k —aZ)V2

'yzz(k +QZ)1/Z, ).:’}127‘1'}’2.

Consider now the matrix element f{f’ X1Xod7/72.
This equals

__€a? 2 A R py-1,2
75,3 2((72 y 2)ek 'y)fo R} sziS p2dp

3
+ (g —vilek + y)fom RY, —EERYszdp)’

since by the selection rule the terms containing dif-
ferent y vanish. Substituting from Egs. (12) and (13)
gives finally

1/2
—k— DI+ X —B)T(QU + 2)) '

(14b)

foo Xix24r eazaZ/ 2¢k —~ 1 )
B )

0 42 03 \y(42 1

in agreement with Crubellier and Feneuille.? In the
same way a second matrix element important in
hyperfine structure evaluates as

foo (x% + x3)ar B ca3k (ek — y)
0 r3 2y ((v -3y -1
(& +y) ) 2a3caZ
b+ +1)) y2044y2 — 1)
X ((ezkz _ 7,2)(;,.2 — 2)]1/2'

V. CONCLUSIONS

As in1 a formal solution for off diagonal matrix
elements of p* can be given. A closed expression for
these matmx elements cannot however be given as it
isD,,., p* and not p* that is proportional to a tensor
operator in this scheme. Two variable models are
also incapable of finding these matrix elements,7;8
Considerable refinement of the technique will be
necessary before a closed formula could be found for
this difficult problem. Further progress would now
appear to lie in the direction of the many electron
problem which awaits some approximate group struc-
ture to describe complex atoms.
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Solutions of a Class of Nonlinear Coupled Partial Differential Equations
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(Received 28 January 1972; Revised Manuscript Received 9 March 1972)

A class of nonlinear coupled partial differential equations are solved. These are generalizations of the general
relativistic equations arising for a static distribution of massive charged particles.

Nordtvedt! has recently found an exact solution of the
general relativistic field equations of Einstein and
Maxwell for a general static distribution of massive
charged particles. This solution resulted from a
pair of coupled nonlinear partial differential equa-
tions of the type

F392F = — $(Vy)2 — 2npF8 (0
and
V2y = — 4npFé, (@)

where F, p and ¢ are functions of x4, ...,x,, with

u = 3 for Nordtvedt's problem, although in the follow-
ing p is arbitrary unless stated otherwise. In this
note a general class of coupled nonlinear equations, of
which Eqgs. (1) and (2) are a special case, is studied
and solved in the sense that F is expressed as an ex-
plicit function of ¥ resulting in an equation which
satisfies. These equations for i are discussed and in
a variety of special cases are well known.

First, a generalization of Eqgs. (1) and {2) for p = o,
which turns out to be simpler, will be looked at.
Consider

(F)"V2F = — (V§)2, ®3)
where  satisfies Laplace's equation
v2y = 0. @)

By treating F as a functional of ¥ and using Eq. (4),
write

2F
Fny2F = F» (VY)2 = — (Vy)2, (5)
dy?
and assuming Vy is not zero,
Ll M (6)
dy2

The cases n = +1 will be handled separately, so for
now these two values of » are excluded. With the sub-
stitution

F=(d+ay), M
solutions to Eq. (6) are obtained for ! and ¢ satisfying

1=2/(n+1) and

a2 =@+ 1)2/2 —1) (8)
or
(r+1)

Fo= (a2 ) P ©)
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where d is an arbitrary constant, and ¥ is a solution
of Laplace's equation. These are solutions for any n
except n = 1. For n = — 1 the solution is

F =d, siny + d, cosy. (10)

For n = + 1, Eq. (6) has a first integral which is
dF
a—p—zq:ﬁ\/c—lnF. (11)

Introducing a new variable y by

y2=c—InF, (12)
Eq. (10) can be solved at once to obtain

V= DxyZec [ et (13)

or
¥ =D £(31)1/2¢¢ erf(c —nF)1/2, (14)

where erf is the error function, which must be in-

verted if one wants F as a function of .

As a side remark, if one has the nonlinear mth order

one-dimensional equation for F = F(x),

. A7F
dx™

F

= ¢ = const, (15)

then it has the solution
F = (d + ax)m™/»+1 (16)

with d arbitrary and a satisfying

am™ = cn + )™{m)m —n —1)- -
X [m— (m— 1)+ D} L. 17)

Returning to the original equations, Eqs. (1) and (2),
let us generalize them to the forms

FrV2F = — a(Vy)2 —bF! (18)
and
V2yY = — cFm™, (19)

where Egs. (1) and (2) are recovered for n =3, a = 3,
b=2np, =8, c=4mp,and m = 6. Using arguments
similar to those in the above paragraphs, one ob-
serves that Eqs. (18) and (19) can be readily solved as
long as the constants & and ¢ are not zero when

n=2(—m)—1 (20)
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and
a=02/c2){l—m—1) (21)

in which cases
F=[d+ (—m@/c)p]/em, 22)

where d is an arbitrary constant. If  =m, this is not
applicable and the appropriate expression is

F =d exp(by/c) (23)
with @, b and ¢ satisfying
b2 = —ac?. (24)

Before discussing the resulting equations for ¢, it is
perhaps worthwhile to point out that when both & and
¢ are zero one should recover the result obtained in
studying Eqs. (3) and (4). To show this, first restrict
n so that #» # +1. From Eq. (20) one has

l—m =3+ 1) (25)
and from Eq. (21),
b/c =+ [2a/(n — DJ1/2, (26)

which is the appropriate expression to use when & and
¢ go to zero. Via Egs. (25) and (26), Eq. (22) becomes

F, =<di[a_”2(L+_Q

2/(n+1)
. 27
2(n — 1)]1/2 ) 1)

The limit of b and ¢ going to zero can now be taken in
Eq. (27), and one recovers Eq. (9), after settinga = 1
as is appropriate. For n = — 1, 1= m, so Eq. (23)
must be used. From Eq. (24), one has

blc =+ iva, (28)
which yields from Eq. (23)
F =d exp(+ ivay). (29)

From this, Eq. (10) is recovered at once. As long as b
and ¢ are not zero, Egs. (20)-(22) yield acceptable
solutions to Eqgs. (18) and (19) for » = + 1, which from
Eqgs. (20) and (21) imply a = 0, namely,

F=[d+b/cy] (30)
is a solution of the equations

FV2F = — pFm+l (31)
and
V2Y = — cF™, (32)

However, for this # value one can not recover Eq. (14).

The coupled set of equations, Egs. (18) and (19), for
the values of parameters given by Egs. (20) and (21)
or Eq. (24) are completely solved by Eqs. (22) or (23)
as soon as ¥ is known as a function of x4, ...,x .
Next let us discuss the equations satisfied by .
From Eq. (19) plus Eq. (22) or (23) one finds, respec-
tively,

V2 = — c[d + (I — m)by/c]m/t-m) (33)
and
VY = — cd™ exp[(mby)/c]. (34)

Nonlinear partial differential equations, of which the
above are examples, are the subject of much recent
and present research in mathematics.2-5 Some
comments specific to the above are found below. As
a side remark, for one dimension both of the above
equations can be solved at once by standard tech-
niques since neither the independent variable nor the
first derivative occurs.

First consider Eq. (34) with cd™ = « and mb/c =8
which is

v2y + a exp(py) = 0. (35)

This equation has been widely studied in one, two, and
three dimensions and it has arisen in various physi-
cal problems. Discussions of some of these are
found in Ref. 2, Sec. 4.16 and Ref. 6, Vol. 1, p, 838 and
Vol. 2, p. 679.

Next consider Eq. (33), change the dependent variable
by introducing

y=d+ (I—m)dy/c) (36)
and define

E=(l—mb and (m/l—m)=y (37)

which results in an equation for y,
V2y + Ry’ =0, (38)

where it should be observed from Eq. (37) that &z = 0,
since I # m in Eq. (33). As far as the author knows,
this type of nonlinear equation has not been exten-
sively studied in arbitrary dimensions for arbitrary
v unless a particular symmetry is present. Some
general discussions which are appropriate can be
foundinRefs. 2, 4, 5, and 6, Vol. 1, pp. 784-93. In three
dimensions for some specific values of y, Eq. (38) has
been studied. For v = 0, one has Poisson's equation.
For y = 1, it is Helmholtz's equation studied in most
mathematical physics books (Ref. 6, Vol. 1, p. 829).
For y = 2, one has an equation which arises in diffu-
sion controlled chemical reactions and is discussed
in Sec. 6. 4 of Ref. 2. Other situations where Eq. (38)
has been studied is when it can be reduced to a non-
linear ordinary differential equation.? This occurs
either in one dimension, in which case the solution is
immediate since neither the first derivative nor in-
dependent variable appears explicitly, or in higher
dimensions when the symmetry of the solution is
known. For example, consider a solution which is
spherically symmetric. Then, in three dimensions,
Eq. (38) reduces to

dz 2 dy
2V L2 4y =0,
a2 v dr (89)

which is known as an equation of the Lane~Emden
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type.89 More generally, symmetry consideration may
lead to a nonlinear equation of the form

(40)

and many cases for different F's have been treated.”-?

ay” = F(x,y,y")

ROBERT J.

SWENSON
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On Multigroup Transport Theory with a Degenerate Transfer Kernel*

Pekka Silvennoinen® and P.F, Zweifel
Department of Physics, Vivginia Polytechnic Instilute and Stale Universily, Blacksburg, Virginia 24061
(Received 3 September 1971)

The multigroup transport equation is studied in plane geometry assuming that the transfer kernel is represent-
able in a degenerate form. The eigenvalue spectrum is analyzed and the associated eigensolutions are obtained
in terms of generalized functions. Full-range orthogonality relation is demonstrated. The full~range complete-
ness of the eigensolutions is established under rather general conditions, For the half-range completeness to
hold, it is additionally required that the scattering kernel be self-adjoint and possesses reflection symmetry.

1. INTRODUCTION

In a recent series of papers! the one-dimensional
multigroup transport equation has been analyzed
applying the method of singular eigensolution expan-
sions. The transfer kernel is assumed to be repre-
sentable in a degenerate form; consequently, the tech-
nique developed is amenable at least to situations
where the scattering operator is compact. In this
paper the formalism is extended to the energy-depen-
dent total cross section. A preliminary report was
presented at a recent conference.?2

A modal expansion in the energy variable of the
linear homogeneous Boltzmann equation yieids the
N-group approximation3

0 a_ax_ i, p) + Zglx, p) = li Ky, )@, wydy’. (1)

The notation is standard.! y has N components,
namely the density in each energy group. Z and K
are N X N matrices representing the total removal
and group-to-group scattering cross sections, res-
pectively.

In the present study it is assumed that the removal
matrix is diagonal—as obtained by an elementary de-
rivation of the multigroup approximation—or diagona-
lizable. However, certain subsequent considerations,
e.g., full range biorthogonality and the identity of the
direct and adjoint eigenvalue spectra, are trivially
extended to a general Z matrix. The groups are or-
dered so that the diagonal elements o; obey

gy20,= " Zzoy=1. (2)

To make the problem tractabie in an explicit form, the
kernel K(p, u’') is assumed to be degenerate;

M
K(, o) =25 L, (WM, (). (3)

i=1
We emphasize that a compact operatorK ¢ L2(— 1,1)
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can be arbitrarily well approximated by a kernel of
this form.4

The discrete eigenfunctions of Eq. (1) have been ana-
lyzed previously,.3 The continuum “eigensolutions”
are obtained by appropriately extending the formalism
of Ref. 1. Therefore the details are omitted in the
subsequent sections. A more comprehensive discus-
sion can be found elsewhere,6

As is customary, the completeness property of the
eigensolutions is studied by first reducing the proof
to a matrix Hilbert problem, Full-range complete-
ness can be demonstrated under relatively weak con-
ditions. In fact, it can be expected to hold even for
nondegenerate transfer kernels.? For half-range com-
pleteness to hold it is additionally required that the
transfer kernel be self-adjoint and possess reflection
symmetry. These rather stringent conditions are
necessitated by the index consideration pertaining to
the Hilbert problem. We might mention that numer-
ous earlier investigations have been incomplete or
have made assumptions in this respect.8

1. EIGENVALUES AND EIGENFUNCTIONS
The usual separation of variables in Eq. (1),
‘p(x’ p') = e-x/u¢(v? u')’ (4)

leads to the eigenvalue equation

( - £ I)4>(V, m) = f_ll Ky, u (v, ) dp’. (5)

v

Similar manipulation in the equation adjoint to Eq. (1)
yields

(z - & I)«p*(V, Wy = [ K2, wet (v, k). (8)

In fact =7 would appear in Eq. (6); but the assumption
of diagonalizability is employed. It should also be
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type.89 More generally, symmetry consideration may
lead to a nonlinear equation of the form

(40)

and many cases for different F's have been treated.”-?

ay” = F(x,y,y")
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mentioned that Eq. (6) is not the adjoint in the techni-
cal sense? but rather is convenient in the analysis.
For example, the orthogonality relation

[ 1@, W (v, wdu = o,

can be obtained immediately.

v =y V)]

The residual eigenvalue spectrum is empty, 5 despite
the fact that the above operators are not normal. The
discrete eigenvalues are zeros of the dispersion func-
tion (z), where

Q(z) = detA(z), (8)
and A is a block matrix, with block elements
1
[A2)];; = 051 — Sy My(u)D(z, WL du (9)
and
~{x- 211
D(e, ) =(E =~ £ 1)1, (10)
The discrete modes can be written as
M
& (Vg 1) = D(vy, 1) _Z)lLi(IJ)ni(Vk ), (11)
i=
E
n2)= [ M (Welz, Wdp. (12)

The continuous spectrum is degenerate in the usual
way.é Thus, on the interval

11 1 1)\ _
14 E("En_y"— on-1>U<0n— 1,6) = (n),

¢(v, u) is (N — n + 1)-fold degenerate,

(13)

62, 1) = [D(v, 1) + A7 )6, )]

M
x 3 Lipn{(), n=N, jsN—n+1, (14)
i=1

(n)

where (v) is a root of the secular equation

det{[A* (v) + A~ (1)] + (i/TVM W) [A+(v) — & (W]} =0,

ve(n), (15)
and 6(v, ) is implicitly defined by the relation
1
(8], = 0,1 — [ M([D(, 1) ¥ imve (v, W]
XL,(W)du.  (16)

In an explicit form 8®)(y, ) is a diagonal matrix with
elements

[ (v, )], = blow—n), vem. (17)
The rank of the matrix appearing in Eq. (15) is
NM. However,the characteristic polynomial is only
of degree N —n + 1 in X (#),6 The vectors ni(]?')(v),
i=M,j=N-—n+1,n=<N—n + 1are defined in
analogy with Eq. (12). As in the case of the discrete
spectrum, the ratio of the components of ni].(v) is in-

trinsically determined by a linear system of equations.

The functions 1 ")(v) are the same for the direct and

adjoint problems.® In order to determine them ex-
plicitly a special combination of the eigensolutions is
more conveniently employed. The details may be
found elsewhere.l1
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II. COMPLETENESS OF THE EIGENSOLUTIONS

We wish to begin the study of the completeness of the
eigensolution set with a general framework of the
formalism assuming an arbitrary range L.

Letting {/(u) represent an arbitrary vector whose
components satisfy the entended Holder condition, we
find that the expansion in terms of the continuous
modes alone is

N N-n+l

viw=2 2 [oM0ev,may, per, (18)
n=1 j=1 (n)
where
m),=@)NL, (19)
and aj(”)( v) is an expansion coefficient.
By substituting the explicit forms of the ¢i(")(u, ) into
this equation one obtains, after some algebra
& () \ (n)
Y(p) = El _zjl Sy [P LN ()™ ()
n=1li=
+6(")(1/,;1)Li(u)Ni(")(V)A(")(V)a(")(v)]dv, (20)
we kL
where
PP W)]; =Py, d,j=< N—n+1 1)
and
N (W), = (0], isN—n+1,j=N (22

In order to proceed further, it is necessary to put Eq.
(20) in “dominant” form.9 Hence we circumvent the
occurrence of a Fredholm term which would eliminate
any conclusive statement of completeness.10 This is
achieved by the change of variable

p— u/o, (23)

in the ith equation of the system. Simultaneously in-
troducing matrices L (1) defined as

(Lo o = [Lilop)] g lalv), (24)
where
) =1, ve |10, 1/d,] (25)

=0 otherwise,
Eg. (20) has the form

M N
2w, (1= 2 Lo,-(m(fL——y 2 2 NP w)aWg, (v)dv
i=1 n=1

N
+Z_)le”)(u)x(")(u)a(")(u)gn(u))- (26)

Here Y, has been obtained from a single columnopera-
tion performed pursuant to Eq. (24), i.e.,
Wo(w)]; = [Wlo )]k, w) (27)

and
gn(p‘)=1’ H‘E(n)L’

g (28)
=0 otherwise.

Generalizing the procedure presented previously,
Eq. (26) is multiplied by M;(p), ¢ = 1, 2, - -M, where

MIu)] g = Mo, )]0, (0). 129)
Defining §,(n) by
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If such a matrix exists, then

3(e) = bt xte) (), ()] ) 22

i p(z)) s (42)

where p(z) is a vector of polynomials.

Sufficient conditions for the existence of a matrix
X(z) are studied extensively in the mathematical
literature. If the Hilbert problem [Eq. (38)] has con-
tinuous coefficients (i.e., if the elements of g(u) are
continuous functions on L and at the endpoints), g(u)
reduces to the identity matrix. Mandzavidze and
Khvedelidzel2 have deduced the existence of a funda-
mental matrix for this case considering a certain
convergent sequence of matrices.

The original theory of Vekua® is applicable if g(u) is
piecewise Lipschitz continuous. The Hilbert problem
is reduced to another one having continuous coeffici-
ents whereby an additional number p enter the index
equation. The Lipschitz condition is required because
the theory is based on the solubility of a certain
system of Fredholm equations.

In order for Eq. (42) to be the solution of Eq. (38) it
is required that the inhomogeneous term f(u) satis~
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£,(b) = M) Z¥,(), (30)
we obtain 1
1 M N
uE () = 5 ]Z) [A (1) — A& (B)]; <£u m Z_
N
N )a ™) g, W) dv + 1 NP @K ()
x o™ (u)gn(u)). (31)
Furthermore, using the identity®
M
iny Zl [A* () + & ()], N ()
P
M
=2 [0 = & O], N0 (32)
in Eq. (31) leads to
(1
0 = 23 (g ) — ), S 520 )
+ 3uA () + A ()] Z-Jpj(w), (33)
where
P, (g, (1) = N (W) a™(u). (34)

Considering Eq. (33) for all values of i = M, we have
a system of NM equations

pg(p) = [1\+ (b)) — & (W),

+ su[Ar(p) + A ()]o(u),  (35)

where the vectors &(u) and p(u) consist of all the com-
ponents [£ i(IJ')]j and [pi(u)]j, i=M =< j= N,respec-
tively.

Finally, introducing the boundary values ®*(u)of a
sectionally holomorphic vector ®(z), where

®(z) = ﬁ | 7= —p()d, (36)
one obtains

pg(n) = A ()@ (u) — K (W)é-(u), w<L. (37
The canonical form of this equation is

&+ () = g)e~(u) + (), pel, (38)
where the transformation matrix g(u) is

g(u) = [A* ()] 1A (u) (39)
and

f(u) = p[Ar (W] E(p). (40)

It is obvious that some special considerationisneeded
if A*(u) is a singular matrix on py€ L. This is tanta-
mount to the occurrence of a discrete eigenvalue em-
bedded in the continuous spectrum.!! We assert that
the normal modes are complete, v € L, where Eq. (38)

has a unique solution, u € L, such that #(z2) — 0 as
V4 [ — 0o,

The essential problem is to establish the existence
of a nonsingular fundamental matrix X(z) whose boun-

dary conditions obey the equation
X (1) [X-()]2 (41)

gu) = ue L,
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fied the extended H_-condition. The definition of
f(u) and Eq. (30) then specify the conditions on an
admissible function (1), Further restrictions on
f(1) arise from the analyticity requirements of &(z).
&(z) will vanish at infinity only if m conditions of
the form

Jilo )W) dp = 0, (43)

(where the vectors w,(u), i =1,2,...,m,are related
to the X matrix) are imposed on f(u).

Denoting the number of arbitrary polynomial coeffi-
cients in Eq. (42) by [, all the parameters relevant to
the solubility constitute the index equation®:

m — 1 =—(1/27)A, arg detg(y) + p, (44)
where A, denotes the change of the operand on L. In
particular, if L is the full-range then

n = (1/21)A_, ;arg detg(y), (45)

where # is the total number of discrete eigenfunctions.

Requiring p = 0, one has a proper number of discrete
expansion coefficients provided that [/ also vanishes.
This is certainly sufficient, and at this pointitappears
that I + p = 0 may guarantee a unique solution. The
number [ is manifestly nonnegative. It is the sum of
all positive partial indices of the X matrix. It is
known? that X can be put in normal form at infinity,
i.e.,

LmX(z)| =1, (46)

k
0 Zz NM

where k; is a partial index.

The nonpositivity of the partial indices (i.e.,! = 0), is
readily established in the full-range case.l In the
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half-range a general proof has been also proposed?
assuming the reflection symmetry of the dispersion
matrix:

Alz)= A= 2). 4m)
The proof is not entirely conclusive because of some
details arising from the fact that the direct and ad-
joint problems have to be considered simultaneously.
For a self-adjoint kernel, where

K(u,p') = KT (i, p), (48)
and therefore
Az) = AT(2), (49)

a rigorous proof has been given.13 Although this
restriction may seem severe, in many nonself-adjoint
problems the scattering kernel can be symmetrized,;
for example, in the thermal neutron case Maxwellian
weights can be introduced.14

In full-range problems a constructive proof could
have been given. This follows from the fact that Eq.
(39) already represents an appropriate Wiener —Hopf
factorization. The solution of the expansion coeffi-
cients can, however, be obtained more conveniently
from the orthogonality relation Eq. (7).

IV. CONCLUSION

The multigroup transport equation was considered
assuming that the transfer kernel can be represented
in a degenerate form. The analysis was carried out
using the method of singular eigensolutions. We wish
briefly to capitulate the results of the preceding sec-
tions by including the relevant conclusions established
earlierl:

(1) Full range biorthogonality of the Case eigen-
functions is shown (rather trivially). In fact, it holds
for even a nondegenerate kernel.

(2) The eigenfunctions are complete on the full range
if any of the following conditions holds:

(a) If pM_ (0)¥(u) obeys the extended Hoélder con-
dition [¢(y) is the vector being expanded, and

we say that the function is “extended Holder” if it
is a weak limit of a sequence of Holder functions]!5;

(b) if the elements of the matrix g(u) = [A+(p)]?
A-(n) are continuous, and if limgjz(1 — €)] = I
Here A(z) is the dispersion matrix.] Also, a cer-
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tainvector f{ 1), which is constructed from [A+(p)]-1,
¥(u), and the matrices M (u) must be “extended
Hdlder.”

(c) if g(p) is Lipschitz continuous almost every-
where, and an index p (which must be calculated,
from the discontinuities in g, for each particular
case) vanish. (For negative p, the set is over-
complete).

The case (a) above is the classic case, in that all
known problems fall into this category. However,
case (b) is of great interest, because it is most
readily generalizable to the half-range case. In fact,
all known specific examples of half-range complete-
ness do fall into category (b). Case (c) is rather un-
interesting because of the stringency of the Lipschitz
condition.

Half-range completeness holds if either (b) or (c)
above holds and, if in addition, the elements K(u, p')
are bounded in a neighborhood of i, u’ = 0. There
are two other requirements as well, which arise from
the condition that no polynomial occur in the solution
of the Hilbert problem. They are

(a’}A(z) = A(— 2). This is always true,if K(u, 1)
= K{— p, — '), certainly a physically meaningful
assumption.

(b’) More stringently, the transfer kernel K is self-
adjoint, i.e.,

Ky, ) =KT(y, p). (48")
While we did not find any analytic solution to the
bounded medium problems, we wish to use our results
to analyze those boundary value problems (1) by ex-
pressing the solutions in terms of the emergent dis-
tribution and the infinite medium Green's function,
which is readily derived in a closed form,® (2) to
justify the numerical solutions, either the direct itera-
tion or the invariant embedding approaches, and (3)
to derive the half-range orthogonality weight function
in terms of the H function along the lines proposed
recently for a special case of our kernel.

Since the completeness proofs are crucial for a work
of this kind some attempt should be directed to ex-
tend the validity of our theorems. It appears that the
classical conditions® 12 could be relaxed. Equally
importantly, the half~-range index considerations are
likely to hold even for nonself-adjoint kernels; but a
proof has not yet been established.
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Radial Moments of Folding Integrals for Nonspherical Distributions
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Simple relations are exhibited between the radial moments of two nonspherical distributions when one is ob-
tained by folding a scalar function into the other. Some applications are mentioned, and the generalization to

nonscalar functions is indicated.

I. INTRODUCTION

It is well known that when one spherical distribution
h(r,) is obtained by folding a scalar function g(s) into
another spherical distribution f(r,),

hry) = [ flry)gls)dr,, (1)

where 8 = r; —r,, then there are simple relations
between the volume integrals J, and mean square
radii {#2) of the distributions. I

Jold) = 41 [ jlry2ar, (2)
then

Jo(h) = Jo(NJ(8), (3)
and if

@2y, =4n [ jorwidr/Jy(j), 4
then

@2y, = (r2), + (2),. (5)

These results are used extensively, for example, in
applications of the so-called reformulated optical
model of elastic scattering from nuclei.l

We present here some generalizations of these rela-
tions, for distributions f {and hence %) which are non-
spherical, which do not seem to be well known., These
find application, for example, in studies of inelastic
scattering from nuclei, e.g., by electrons. They also
provide checks on the numerical accuracy of calcula-
tions of folded functions like (1).

We define the generalization of (1) as
hey) = [ flry)g(s)dr,, (6)

where g(s) is still a scalar function of the magnitude
of s. The nonspherical distribution f can be expres-
sed by the multipole expansion?

f(r2)=lZm) fgm('rz)yzvm(ﬂz), ")
where
Fim2) = [ )Y H(Q5)* dR,. (8)
There is a similar expansion for &,
k(rl) = Z\/ hz,m(yl) Yﬂ'f(gl)- (9)
M

Given the Slater expansion2 of g

g(!rl -—r2!)=4ﬂk7_) g7y, 7o) YHQ, )Y, 2(8,), (10)
q

these multipole coefficients are related by

huad®y) = 41 [ £,0r ) g7y, 7 ) 737 5. (11)

We also define generalizations of quantities (2) and
(4%
I,(5) = 4n [ jryrm+2dr (12)

and

J. Math. Phys., Vol. 13, No. 8, August 1972

), = TV T4, (13)
We note from the definitions above that
JL(jLM) = 477‘121\4”), (14

where g, ,,(7) is the usual?-3 multipole moment of a
distribution j(r},

ayuli) = [ ie)rLYM(6, ¢)dr.

We also define for the multipole coefficient j, ,,{r)
the quantity

R%,«(jLM) = JL+2 (jLM)/JL(jLM)‘ (15)
In studies of electron scattering, R,, is often refer-
red to as the “transition radius.”
It is relations between these various quantities that
we discuss here. The main results are given in
Egs. (17)~(19) below.
II. RESULTS

The results are obtained by a straightforward appli-
cation of standard techniques? to the integrals

[ he ) r B Ry H(R,)dr .

In particular we use the solid harmonic expansion
which holds for ry =8 + ry,

47 1/2 -

XYEXM@KL — 2,0, M — p, p|LM), (16)

where

()= @

and {abaB|cy) is the usual? Clebsch—Gordan or
Wigner coefficient,

We soon obtain for 2 = 0, 2 the relations

It ) = I o &) (17)
and
Jrralipa) = Jpa (i) Io(8) + 5L + 3)J1 (f1,0) I2(8).
(18)

Combining these two we have for the transition radii
R2,(hyp) = RE(frp) + 5L + 3X72),. (19)

Equations (17) and.(19) reduce to Egs. (3) and (5),
respectively, for L = 0.

Relations between the quantities of higher order may
be obtained, but become increasingly complicated and
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less useful as k increases. For example, for # = 4
we use the expression

Is + ryl4 =25 [(321/15)s2r3Y5(8,)Y5(02,)"

I
+ (167/3)s7,(s2 + 73) YH(Q VT (R,)]

+ (st + i+ 339 s272) (20)

to obtain

Jrearae) = Jpaa () do(&) + 3L + 5)J, o fa)J2(8)
+ &L + 5)(2L + 3)J (S ) du(g) (21)

III. EXTENSION TO NONCENTRAL ‘“FORCES”

The function g(s) itself may be generalized to non~
central forms by writing

Gyol8) = (4m)1/2g,, (s )VR(L), (22)
which is normalized so that the scalar g(s) of the
previous sections is now g,4(s). We may now pro-

ceed as before. The distribution z now depends upon
the indices K, @ where

W(r ) = [ fr,)Go(s)dr,, (23)
as do its corresponding multipole coefficients
hEe(r, ) = ]{‘:‘, REQ(r, WH(Q, ). (24)
M

We soon find the generalization of the relation (17)
for £ =0,

Jo () = of G k(- k,1-) Tx(8xo)s (25)
where

_ (2L + 1)! 1/2
affy = ((2—1( FIVEL —2K + 1)1)

x(L—-KKM-—Q,Q| LM)

1119
_ 2L +1 L—-M L+M>1/2_
= [(27{+1)(2L—2K+ 1)<K—Q> K+Q (26)

The previous result (17) is regained with K =@ =0
since a9 =1. We alsohave a{¥ =1 and 0§, =0
if K> L.

The higher order results become progressively more
complicated. For %2 = 2, for example, the generaliza-
tion of Eq. (18), we find J;,,(#f%) to be a linear com-
bination of the products

JK(gKQ)JL- K+2 (fL-K, M-Q )2

Ji 8@ - k2 fi-ka2, -0

Iz 8k It- ke Si-k, -0
and

I i2(85@) Ir- k (f1- k-2, u-0)

IV. CONCLUSIONS

The results of most interest are those presented in
Egs. (17) and (19) and are generalizations of the well-
known results (3) and (5) for spherical distributions.
An example of their application in studies of electron
scattering from nuclei occurs when one folds a finite~
sized distribution g of the charge on a proton into a
“point-proton” distribution f in order to obtain the
nuclear charge distribution %. Equation (17) shows
that the transition charge density for a 2Z-pole
transition and the corresponding point-proton trans-
ition density have the same expectation value for 7Z,
Hence the reduced transition probability B(EL) may
be evaluated using either distribution. The transition
radius R,,, however, is increased by the folding by

an amount given by Eq. (19).

ACKNOWLEDGMENT

The author is indebted to the IBM-360 computer for
presenting numerical results which exhibited the
relation (17) and which forced him to the foregoing
analysis.

* Research sponsored by the U.S. Atomic Energy Commission
under contract with the Union Carbide Corporation.

2 D. M. Brink and G. R. Satchler, Angular Momenium (Oxford U.P.,
Oxford, 1968).

1 G.W.Greenlees, G. J. Pyle,and Y. C. Tang, Phys. Rev. 171, 1115

3 L. W.Owen and G. R. Satchler, Nucl. Phys. 51,155 (1964).
(1968).

Variational Estimates and Generalized Perturbation Theory for the
Ratios of Linear and Bilinear Functionals*

Weston M. Stacey, Jr.
Applied Physics Division, Argonne National Labovatory, Avgonne, lllinois 60439
(Received 20 October 1971; Revised Manuscript Received 15 March 1972)

Variational functionals are presented which provide an estimate of ratios of linear and bilinear functionals of
the solutions of the direct and adjoint equations (inhomogeneous and homogeneous) governing linear systems.
These variational functionals are used as the basis for a generalized perturbation theory for estimating the
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1. INTRODUCTION

If a variational functional can be written for a given
property of a linear system, then that property can

be computed to second-order accuracy (with respect
to errors in the solution function) by evaluating the is2

variational functional. For example, a variational
functional for the eigenvalue of the linear system
described by the equationt

(A—2B)p, =0 (1)
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1. INTRODUCTION

If a variational functional can be written for a given
property of a linear system, then that property can

be computed to second-order accuracy (with respect
to errors in the solution function) by evaluating the is2

variational functional. For example, a variational
functional for the eigenvalue of the linear system
described by the equationt

(A—2B)p, =0 (1)
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A[(p;’ ¢)\] :<¢:,A¢)\>/<¢1‘B¢x>’ (2)
where ¢} must satisfy the adjoint equation
(A* —AB¥)¢} = 0. (3)

A,B,A* and B* are linear operators satisfying

(u Av) (A u,v), (#,Bv) =(B*u,v). If functions ¢
and ¢> which dlffer from the solutlons to Eqs. (1) and
(3) by 6¢ and 6¢*, respectively, are used to evaluate
Eq. (2), it may be shown that

= A[¢3, . — Mo, 0,] = 0 + order{6¢*, 5¢).

Similarly, a variational estimate of the linear func-
tional (S, ¢) of the solution to the inhomogeneous
equation

(A—Bjp =S “)
is given by the Roussopolos functional3

R[¢*, 9] =(S*, ¢) +(¢*,[S— (A — B)¢] (5)
or the Schwinger functional4

I(9* 0] = (5%, Yo", NKe™, (A —B)g),  (6)
where ¢* satisfies

(A*— B¥)¢p™* = S*. (7)
Selengut5 demonstrated that these latter two func-

tionals are equivalent.
Pomraning® suggested the variational functional

Py~ ¢] = G[o] +<¥*,[S— (A—B)o) (8)

for estimating the arbitrary linear functional G[¢] of
the solution of Eq. (4). He demonstrated that ¢ * must
satisfy

(A* - BY Y™ =G"[¢], (9)
where the prime indicates the functional derivative.

Pomraning? also suggested the variational functional

PZ[G*,(P}\]zG[(I))\] +<6*, (A")\B)(tb)) (10)
for estimating an arbitrary linear functional G[¢,] of
the eigensolution of Eq. (1). He showed that 6* must
satisfy

(A* —2BB* = — G'[¢,]. t3Y)

A necessary condition for Eq. (11) to have a solution
is that the rhs is orthogonal to the eigensolutions of

Eq.(1) or
(¢,G [0, =0,

which is just the basic property of homogeneous
functionals.

In many practical situations, the property of interest
is the ratio of two linear or bilinear functionals of
the solution to the direct {Eqs. (1) or (4)} and/or ad-

joint [Egs. (3) or (7)] equations describing the system.

While Pomraning's functionals may be specialized to
accommodate the case of ratios of linear functionals
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of the solution to the direct equations, no variational
functionals have been presented which are suitable
for estimating ratios of linear functionals of the solu-
tion to the adjoint equation or ratios of bilinear func-
tionals of the solutions of the direct and adjoint equa-
tions.

The primary purpose of this paper is to present
variational functionals which may be used to estimate
ratios of linear and bilinear functionals of the direct
and adjoint solutions of the equations which govern
linear systems. A secondary purpose is to develop a
perturbation theory from the variational functionals,
which, for eigenvalue problems, is similar to the
generalized perturbation theory developed from physi-
cal arguments for reactor physics problems by Usa-
chev8 and extended by Gandini.® Thus, an ancillary
result is the provision of a firmer theoretical basis
for the generalized perturbation theory, in addition to
extending that theory to systems governed by inhomo-
geneous equations.

H. LINEAR FLUX RATIOS-INHOMOGENEOUS
SYSTEMS

Consider the problem of estimating the ratio of linear
functionals of the solution ¢ of Eq. (4)

R;=(Z,»/{Z; ), (12)

where Z; and Z; are scalar operators. A direct esti-
mate of R;; from Eq. (12) with a function ¢ which dif-
fered from the solution of Eq. (4) by a function ¢
would introduce an error 0R;; <« (6¢);i.e.,a first-
order error.

However, the variational functional

Filv*, 0] = €2,0)/¢Z;o0{1 — (¥*,[(A — B)¢ ~ s}
(13)

provides an estimate of R;; with error 6R ;< (¢ ", 8¢);
i.e., of second order. Here 6¢ is the difference be-
tween the trial function ¢ used to evaluate Eq. (13)
and the solution of Eq. (4),and 6y * is the difference
between the trial function { * used to evaluate Eq. (13)
and the solution of

= (Zi/<2i¢)) - (Ej/<2j¢>)° (14)

The proof of this follows from the easily verifiable
fact that F, is statlonary (i.e.,8F; = 0 to first order)
about functions ¥ * and ¢ wh1ch satisfy Egs. (14) and
(4), respectively, and the stationary value is R;;.
Pomraning's results® reduce to this form when

Gl¢] = Ry;.

A perturbation theory for changes in R, J correspond-
ing to changes in the system parameters can be de-
rived from the difference

- Fl[u/ *; (p]' (15)

The prime indicates that the perturbed values Z}, 2},
A’,B',S are used in Eq. (13) to evaluate F’, wh11e

the unperturbed values are used to evaluate F. Trial
functions which approximate (or are equal to) the un-
perturbed solutions to Egs. (4) and (14) are used to
evaluate both F’ and F. The result,accurate to second
order, is

(A*—-B*)IP*

5R£]‘ = Fi[‘l’*’ 4’]
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oR;;  (6Z;9) (0Z;¢) i
Ry;  (Z;&0 (¢

,[(6A — 8B)p — 85,
(16)

where 84 = A’ — A, etc. If the solution ¢ did not
change with the introduction of the perturbation, the
first two terms in Eq. (16) would rigorously describe
the change GRij /Rij. A conventional estimate (one in
which the unperturbed flux is used) based on Eq. (12)
yields just the first two terms. Thus, the final term
in Eq. (16) accounts for the effect of the perturbation
upon the solution ¢ and represents a refinement upon
conventional methods.

IIl. LINEAR FLUX RATIOS—-HOMOGENEOUS
SYSTEMS

Consider again the problem of estimating R, this
time with ¢,, the fundamental eigensolution of Eq. (1).
Again, a direct estimate from Eq. (12) would yield a
first-order error 6R;;. The variational functional

Folu*, ¢a] = (T;00AZ;00[1 — 4%, (A —AB)p )]
(17)

provides an estimate of R;; accurate to second order
with respect to the dlfferences 8¢ and 6y* between
the trial functions used in evaluating Eq. (17) and the
solutions of Eq. (1) and

(A* - AB*)‘V* = (zg/(zi%\)) - (Z]-/(Zj%\)), (18)
respectively. Proof follows from consideration of
the stationarity conditions for F,. Pomraning's re-
sults? reduce to this form when G[¢] = R;;.
Equation (18) has a solution because the rhs is ortho-
gonal to ¢,, the fundamental eigensolution of Eq. (1).
The method of successive approximations yields a
solution to Eq. (18) of the form (see Appendix for dis-
cussion of convergence)

= f)o Yo (19)
where .

A*‘ps = (Ei/(z:,.qb))) — (Zj/<2j¢)\», (20a)

A*Yr=2AB*,_, n>0. (20b)

A mutual orthogonality relation can be constructed
from Eqs. (20) and Eq. (1):

_(Zio0  (Zye0
T(Ziow  (Z00
=(Yg,ABoy = (AB*Y§, ¢ = (A™Y], 00

=(Y1,Ap =Wt ABo =+ ={Y,,\Bo) =

Thus, the ¥, and hence y*, are biorthogonal to ¢,
with respect to the operator B. This suggests that
Eqgs. (20) be replaced by

= <A*W(‘)" ¢)\> = <4/(‘)<:A¢)\>

A*gs = (Zi/(zi‘i’)\» — (Ej /(zj¢)\»9 (21a)
A*Er=ABYYr_ ,, n>0, (21b)
Y= &x—[K&n, Bo /oY, Bo)) 3], (21c)

where the second term in Eq. (21c) was added to re-
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move any fundamental mode contamination which may
arise from numerical roundoff.

A perturbation theory for changes in R;; correspond-
ing to changes in the system parameters can be de-
rived from the difference

Fz[’ib*’ ¢)\])

where both F, and F, are evaluated with approxima-
tions to the solutions of Eqgs. (1) and (18) for the un-
perturbed system parameters, while perturbed and
unperturbed system parameters are used in Eq. (17)
to evaluate F, and F,, respectively. The result,accu-
rate to second order, is

6Ry; (0Z;¢))  (0Z;¢y)
Ry (Zi0 (Z;00

8R,; = Fyly™, ¢,] — (22)

—(Y*,[6A —6(B)]o ),

(23)
where, again, 84 = A’ — A, etc. As before, the third
term in Eq. (23) accounts for the effect of the pertur-
bation upon the eigensolution ¢, and represents a
refinement upon conventional theory, which would

approximate dR;; /R, ;; with the first two terms of
Eq. (23).

Usachev® obtained a perturbation expression equiva-
lent to Eq. (23), and prescriptions equivalent to Eqgs.
(19) and (21),from physical arguments for the case

of neutron transport within a critical nuclear reactor.
His results are subject to the additional constraint
6(\B) = A8B. 1t is indicative of the power of varia-
tional principles that the straightforward derivation
given above led to the same results as the convoluted
physical arguments of Usachev.

IV. LINEAR ADJOINT RATIOS-INHOMOGENEOUS
SYSTEMS

Now consider the problem of estimating the ratio of
linear functionals of the solution of Eq. (7)

Ry =(9%s)Ao"s;), (24)

where s; and s; are scalar operators. A direct esti-
mate from Eq. (24) results in errors SR ;; which are
first order in the difference 6¢* between the trial
function used to evaluate Eq. (24), ¢*, and the solution
of Eq. (7), ¢

The variational functional

F3[¢*, ‘P] = «(P*S,-)/((b*sj»
x {1 —([(A* — B*)¢p*~S*], ¥}

provides a second-order estimate of R,*J relative to
the functions 6¢™* mentioned above and 0y, which is
the difference between a trial function { used to

evaluate Eq. (25) and the solution to

(25)

(A—BW = (s; Kp™s ;) — (s; /¢*s;)). (26)
Proof of this follows from consideration of the
stationarity properties of F,.

A perturbation theory for changes in R;; correspond-

ing to changes in the system parameters can be de-
rived from the difference

OR}; = F3[¢*,¥] —- 27

3[¢*’ RP],
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where both F;5 and F; are evaluated with approxima-
tions to the solutions of the unperturbed Egs. (7) and
(26), FY, is evaluated with the perturbed system para-
meters, and F'; is evaluated with the unperturbed
system parameters. The result, accurate to second
order, is

SR}, (¢*bs;)
Ry (9%s;)

($"6s,)

~ (o%s;) —ea™~

(28)

Because the first two terms in Eq. (28), which corres-
pond to the conventional method of estimation, are
exact in the case where the perturbation does not
change the adjoint, the third term in Eq. (28) repre-
sents a refinement to account for the effect of the
perturbation on the adjoint,

V. LINEAR ADJOINT RATIOS-HOMOGENEOUS
SYSTEMS

In this case, a variational estimate of R, is sought
for the case in which the ratio involves fmear func-
tionals of the fundamental eigensolution ¢} of Eq. (3).
The variational functional

FuloX, v] = KoXs 2 Aoxs; D1 — (93, (A

provides a second order estimate of R*] relative to
the difference 6¢} between the trial function used to
evaluate Eq. (29) and the solution to Eq. (3), and the
difference &y between the trial function used to eva-
luate Eq. (29) and the solution to

= (5; /(@350 — (5; A93s ;). (30)

Proof follows from the stationarity properties of Fy.

—AB)Y)] (29)

(A —2AB)Y

Equation (30) has a solution because the rhs is ortho-
gonal to ¢}, the fundamental eigensolution of Eq. (3).
The method of successive approximation applied to
Eq. (30) yields a solution of the form (see Appendix
for discussion of convergence)

V=2 V., (31)
where

Yo =&, — (K63, BE,) K05, Bo)) 0,1 (32)
and the £, are generated recursively:

Aty = (s; Apxs ) — (s; AoXs;)), (33a)

At, =2\By,,, n>0. (33b)

The second term in Eq. (32) is included to remove
fundamental mode contamination which may arise
from numerical roundoff. (A mutual biorthogonality
relation exists which requires that (¢¥, By ) = 0,
n=0)

A perturbation theory may be derived, similar to the
previous section, from the difference

6R}; = Fylor,w]l— Fylof, ¢, (34)

where the unperturbed trial solutions are used to
evaluate /) and F,. Perturbed system parameters
are used to evaluate F, while F, is evaluated with
the unperturbed parameters. The result, accurate to
second order, is
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OR};  (p}bs;) (q> 6s ;)
R;} <¢:Sz> <¢)\SJ‘>
The reasoning of the previous section indicates that
the third term in Eq. (35) is a refinement upon con-
ventional theory which accounts for the effect of the
perturbation on the adjoint, Gandini® obtained an ex-
pression equivalent to Eq. (35), subject to the con-
straint 6(\B) = A6B, and algorithms equivalent to
Eqgs. (31)-(33), in his extension of Usachev's general-
ized perturbation theory.

—(¢X,[6A—5(xB)|Y). (35)

VL. BILINEAR RATIOS-INHOMOGENEOUS
SYSTEMS

In many practical situations an estimate of the ratio
of bilinear functionals of the solutions ¢ of Eq. (4) and
¢* of Eq. (7)

is required. Here H; and H; are arbitrary linear
operators. A direct estimate from Eq (36) leads to
errors which are of first order in 6¢* and 8¢, the
differences between the trial functions ¢* and ¢ used
to evaluate Eq. (36) and the solutions to Eqgs. (7) and
(4), respectively.

The variational functional

Fs[¢*, T, ¢,T] = o*,H;0) L¢*,H;0)

X{1—(r*, (A—B)¢p~Sh—([(A*—B*)p*—5*],T)}

37)

provides an estimate of p;; which is accurate to
second order in 6¢*, 6¢ and the functions 6I'* and
oI', which are the dlfferences between the trial func-
tions T* and I used to evaluate Eq. (37) and the solu-
tions of

(A*— BMIT*
and

— (HFO*/@* ) — HFo* K9 H;d) (38)

(A— B)T = (H;o/o* , H;0)— (H;0 0™, H;0)), (39)
respectively. Proof follows from the stationarity
properties of Fy,

A perturbation theory for changes in p;; correspond-
ing to perturbation in the system parameters can be
derived from the difference

op;; = F4[9*,T*, ¢,T] — F5[¢*,T*,¢,T], (40)

where both F and F;; are evaluated with approxima-
tions to Egs. (4), (7), (38), and (39) for the unperturbed
system; and F} is evaluated with the perturbed para-
meters, while Fy is evaluated with the unperturbed
parameters. The result, accurate to second order, is

69ij_<¢*’5Hi¢)_<¢*,611j¢>_ I'* (A — 6B)6_ 6S
py;  (ONHS (o H;p) el o—osh
—~([(6A* — 6B*)p* — 8S*],I). (41)

The first two terms in Eq. {(41) correspond to the con-
ventional theory and would be exact if the perturba-
tion did not alter ¢* or ¢. The third and fourth
terms are refinements which account for the effect
of the perturbation upon ¢ and ¢*, respectively.
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VII. BILINEAR RATIOS—HOMOGENEOQOUS SYSTEMS

Consider again the problem of estimating p;; of Eq
(36), this time with ¢} and ¢,,the fundamental eigen-
solutions of Eqgs. (3) and (1), respectively. As before,
a direct estimate from Eq. (36) would have an error
which was first order in 6¢; and 6¢,, the differences
between the trial functions ¢} and ¢, used to evaluate
Eq. (36) and the solutions of Egs. (3) and (1), respec-
tively.

The variational functional

F6[¢;’F*s ¢)\,r‘] = ((¢;,H,¢)\>/(¢);,H]¢>\»

x[1—(¢}, (A —AB)T) —(T'*, (A—2B)oy)]  (42)
provides an estimate of p;; which is accurate to
second order in 665, 8¢,, and the differences 6I™ and
OI" between the trial functions used to evaluate Eq.
(42) and the solutions of

(A*¥ = XBX)T* = (H*¢¥ AOX,Hid N — HF XKD x,H;d))
(43)

and

(A - }\B)r = (Hi¢>\/<¢:,Hi¢>\» - (Hj¢)\/<¢;’Hj¢)\»;
(44)

respectively. Proof follows from the stationarity
properties of Fy.

Equation (43) has a solution because the rhs is ortho-
gonal to ¢,,the fundamental eigensolution of Eq. (1).
Application of successive approximations to Eq. (43)
yields (see Appendix for discussion of convergence)

= 5 1, (45)
where "
Ly =&, — (&n, BOAdx,BoIoL, (46)
and the ¢ are generated recursively:
A*ES = (HO3AOLH SN — (H oY/ 0N Hi9)), (4Ta)
AXEX =A"B*TY.,, n>0. (47b)

Similarly, a solution to Eq. (44) may be constructed
from

r=5r, 8)
where n=0
r,=¢,— «¢::B‘En>/<¢‘;)3¢)\»¢x’ (49)

and the £, are generated recursively:

Ago = (H,-(i))\/((l);,Hi(b)\)) — (Hj(p)\/<¢))t’Hj¢)\», (50a)

Af, =BT, 4, n>0. (50b)
The second terms in Eqs. (46) and (49) are included

to remove any fundamental mode contamination which
may arise from numerical roundoff. (Mutual blortho-
gonahty relations exist which require that ( B¢x) =

0,{(¢3,Br =0, n=0.)

A perturbation theory for changes in p;; correspond-
ing to perturbations in the system parameters can be
derived from the difference

BILINEAR FUNCTIONALS
o0;; = Fg[oX,T%, 05, T — Fg[o3, T, ¢,,T].

As before, Fg and F; are both evaluated with trial
functions which approximate the solution of the unper-
turbed Eqgs. (1), (3), (43), and (44) Perturbed para-
meters are used to evaluate Fg, while unperturbed
parameters are used to evaluate F;. The result, accu-
rate to second order, is

1123

(51)

6pij <¢;: 5Hi¢)\> <¢{7 BH]' ¢)\> x

— = — — ,[6A —8(AB)| IV

Py (O3, H; b\ (¢;)Hj¢)\> (ol (0B)]
—(T'*,[84 — 6(B)]py).  (52)

Again, the first two terms in Eq. (52) correspond to
the conventional result. The third and fourth terms
are refinements which account for the effect of the
perturbation upon ¢} and ¢,, respectively.

Gandini? obtained a perturbation expression similar
to Eq. (52), subject to the constraint §(AB) = A58, and
algorithms equivalent to Egs. (45)-(50) in his exten-
sion of Usachev's generalized perturbation theory.
The functional Fy specializes to a variational princi-
ple given by Delves1? for estimating quadratic func-
tionals, rather than ratios, when the operators are
assumed to be self-adjoint and the formalism is re-
vised to omit the term in the denominator.

vii. POSSIBLE APPLICATIONS TO NUCLEAR
REACTOR PHYSICS

Potential applications to problems in reactor physics
are considered to illustrate the use of the theory
presented in the previous sections. Hopefully, these
examples will suggest applications in other fields by
analogy.

Frequently, the solution to a problem slightly differ-
ent from the problem of interest is either available
or readily obtainable, and one would like to use this
solution to compute a ratio of functionals for the
problem of interest, or one would like to assess the
change in the ratio of functionals corresponding to
the changes leading from the problem for which a
solution is available to the problem of interest. In
the former case, the variational functionals F;
through Fg provide a more accurate estimate of the
ratio of functionals than would be obtained by a direct
evaluation of the ratio using the available solution.

In the latter case, the perturbation expressions pro-
vide a means, accurate to second order, of assessing
the change in the ratio of functionals without the
necessity of calculating the solution for the problem
of interest. Changes in material composition, ma-
terial arrangement, mathematical model, nuclear data,
source, and fuel temperature arise in reactor analy-
sis.

Material composition changes occur when one ma-
terial is substituted for another (e.g., insertion of a
control rod, experimental device, detector, etc.) and
when changes in isotopic composition due to fission,
activation, and radioactive decay take place. Changes
in material arrangement may arise from thermal
expansion or changes in the loading pattern. In a
somewhat different vein, the material in a reactor
may be homogenized in the calculational model to
facilitate obtaining a solution. This homogenized
solution could be used, together with the actual hete-
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rogeneous material configuration, in a variational
functional to obtain an estimate of a ratio in the ac-
tual system, or in a perturbation expression to assess
the difference between the ratio in the fictitious
homogenized model and in the actual heterogeneous
model. (Variational and perturbation expressions for
the eigenvalue have been applied to this end.11,12)

In the same vein, a simplified mathematical model
may be used to obtain an approximate solution. This
solution may be used in a variational functional con-
structed for a more rigorous mathematical model to
obtain an estimate of a ratio. Alternately, the pertur-
bation expression, with 64 and 6B corresponding to
the differences between the more rigorous and
approximate operators, could be used with the app-
roximate solution to assess the effect of the differ-
ence between the more rigorous and approximate
models on the ratio. Replacing high-order neutron
transport approximations with low-order approxima-
tions, such as diffusion theory, and neglecting aniso-
tropy in the neutron angular scattering distributions
are typical simplifications.

Perturbation expressions of the form presented in
this paper have been used to assess the effect of
nuclear data uncertainties upon ratios of functionals,
both for the purpose of assessing the implied uncer-
tainty in the performance of nuclear reactors!3,14
and for adjusting averaged cross sections to obtain
agreement with integral experiments.15,16 Use of
the variational functionals would allow an estimate
of the corresponding ratios when new data became
available without the necessity of obtaining a solution
corresponding to the new data.

The variational functionals F; and F, are appropriate
for estimating reaction rates or activation ratios in
subcritical (F;) or critical (F,) reactors. In this case
T, and Z; are the cross sections appropriate to the
reactions, distributed or localized in space and
energy according to the dictates of the problem. The
functionals can also provide an estimate of relative
local flux or power peaking if Z; = 6(r — r,) or
Z6(r—7)and Z; = 1 or I, respectively. or — 7))
is the Dirac delta,7 is the spatial variable, and 2 is
the macroscopic fission cross section distributed in
space and energy. Another use of these functionals
is to estimate the relative neutron flux above some
energy E ;. In this case,Z; = U(E — E ;) and

;= 1, where U is the step function.

An estimate of the relative importance of neutron
sources s; and §; to the reaction rate (§*,¢) ina
subcritical reacfor is provided by the variational
functional F;. Both F, (subcritical) and F, (critical)
provide an estimate of the relative local adjoint when
§;=06(r—7;) ands; = 1.

The variational functionals Fy (subcritical) and Fy
(critical) provide an estimate of reactivity worths,
effective delayed neutron fraction, and effective
prompt-neutron lifetime, depending upon the choice
of H; and H;. When H; is the change in the neutron
balance operator — A(A — AB) (critical) or —A(A — B)
(subcritical) due to a sample inserted into a reactor,
and H; is the integral operator

X(E) [;° dB' vE(E",7),
then the variational functionals provide an estimate
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of the reactivity worth of the sample. Here E is the
neutron energy, ¥ is the number of neutrons per fis-
sion, and x is the energy distribution of fission neut-
rons. When H; is the integral operator

XJE) [ dE' vBZ,(E',7),

and H; remains the same, an estimate of the effective
delayed neutron fraction is provided by the variational
functionals. Here, 8 is the fraction of delayed fission
neutrons, and x4 is the distribution in energy of these
delayed neutrons. If f; is the inverse neutron speed,
and H; remains the same, 5 and Fg provide an esti-
mate of the prompt-neutron lifetime. A ratio of reac-
tivity worths results when both H; and H; are changes
in the neutron balance operator.

Thus, there are many potential applications of the
theory to nuclear reactor physics, only a few of
which have been examined to date. Certainly, fruitful
applications must exist in other fields as well.

APPENDIX

The method of successive approximations was used
to construct a solution to the flux importance equation

(A—=AB)x=S (A1)
of the form
O
X= 21 Xns (A2)
n=0
where
Axe =5, (A3)
Ax, =ABx,.,, n>0. (A4)

Solving Eqs. (A3) and (A4), which requires the assump-
tion that A-1 exists,

Xp = ATIABY oy = (A~1AB)2A-1S,n = 0, (A5)
and substituting in Eq. (A2) yields
X = °Z°;0 (A-1AB)"A1S. (A6)
n=
It was shown previously that
(¢3,8)=0,
where ¢} is the fundamental (i = 0) eigenfunction of
(A*— 2 B"¢f=0. (A7)

Thus, S can be represented by an expansion in the
higher harmonic ¢ > 0) eigenfunctions ¢; of
(A—xrB)p; =0, (A8)

assuming that these eigenfunctions form a complete
set. Writing
o«
S = E aiAquI)i,
i=1
it follows that
o0
(A-IAB)A™1S = 25 a; (A /A )" ;.
i=1

If it can be established that A, < [x;[, ¢ =1, then the
sum in Eq. (A6) converges and may be written
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(A-IAB)»A"1S = (I — A"1AB)1A"1S
= (A —aB)"1S,

X =
0

N
11

(A9)

which is the solution of Eq. (Al). For example, when
A and B correspond to the removal and fission opera-
tors in the multigroup, finite-difference representa-
tion of neutron diffusion theory, there are positivity
proofsl? which assure the convergence of the series
in Eq. (A9).

A somewhat more general proof may be developed
from a theorem of linear algebra,l® which states that
if the range of (A — AB) is closed, which is assumed,
then Eq. (A1) has a solution for a given S if, and only
if, S is biorthogonal to every solution of the adjoint
homogeneous equation
(A —xB*)¢p* = 0. (A10)
The vectors S defined by the right-hand sides of Eqs.
(30) and (43) have this property, which establishes the
existence of a solution to Eq. (A1), at least for those
situations in which Eq. (A10) has a solution.

Assuming that A-1 exists, Eq. (A1) may be written

(I —A-1AB)x = A71S. (Al1l1)
By defining
N N
zy= 2 (ALBp= ) Pn, (A12)
n=0 n=0

it will be shown that the condition sufficient for con-
vergence of the series in Eq. (A6) to the solution of
Eq. (Al) is: That for all vectors y, there exists a con-
stant y , independent of y, such that 0 <y < 1 and such
that

|A-1aByl=|Py| < v lyl, (A13)
where | | denotes the norm.

First, it will be shown that Eq. (A13) is sufficient to

insure convergence of the sequence 2yx. For any vec-

tor x(M = N),

N N
>, Punx|= ), |Pnx|
n=M+1 n=M+1

(2% — 22| =

1125

N
yrlx| = yM1 35 ynMl|y|

n=M+1

N
= 2

n=M+1
<[yM*1/(1—y)] lxl.

Thus, it follows that an integer M, exists such that
for all M > M,,y¥*1 < €(1 — v) for any € > 0. Hence,
the sequence z,x converges in the Cauchy sense.

Assuming a complete vector space,the sequence z,x
will converge to some limit vector ¢, Define the
operator K

g=Kx= lim zyx.
N—> o0

(A14)

Consider the product

N N+1
zN(I—P)xz(Z) Pr_ 7 P">x= (I — PN*1)x,
n=0 n=1

Since Eq. (A13) obtains, withy < 1,
lim z,(I—P)x =x,
N-o0
It also may be shown that (A13) is sufficient to insure
that
K(I—-P)x =1lim z2y(I—Plx=x
and Nz
(I—P)Kx=1lim (I—-Plzyx =x.

N->©

Hence, lim ., o, 2 is the inverse of (I — P).

(A15)

Consequently, relation (A13) is sufficient to insure
the convergence of Eq. (A6) to the solution of Eq. (Al).

In general, the solution of Eq. (Al) is not unique be-
cause Eq. (A8) has a nontrivial solution which may be
added to any solution of Eq. (Al), and the sum remains
a solution of Eq. (A1), However, the successive
approximation solution technique applied to Eq. (A1)
leads to biorthogonality relations (¢*,By) = 0 which
exclude solutions to Eq. (A8), and thus a unique solu-
tion to Eq. (Al) is obtained.

Similar proofs may be readily constructed for the ad-
joint importance equation.
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A method to .solve nonlinear dissipative wave equations using ideas of Luke, Krylov, and Bogolyubov is presented.
The r_nethod is compared to Whitham's theory. Dispersion relations for nonlinear dissipative waves, including
amplitude dispersion, are discussed. Furthermore, stability problems of such waves are investigated.

INTRODUCTION

Mathematical progress during the last years makes
it possible to investigate the dispersion of nonlinear
wave equations,

Lashinsky?! has discussed in detail the motivation to
investigate mathematical models for nonlinear modes
in plasmas, and he also presented such a model?
starting from a weakly nonlinear oscillator equation

¥ + wix = — eF(x, k). (1)

To discuss the solutions of this equation, Lashinsky
used the method of averaging in conjunction with the
technique of variation of parameters (Krylov~
Bogolyubov method3). For € = 0, Eq. (1) has the solu-
tion

x = Acos(wyt +¥), (2)

where now A — A(t),¥ - ¥ (t) for € £ 0. Under the
assumptions € << 1, 4/A << wy, ¥/ << w, which
express a weak nonlineavity,by the so-called method
of averaging (over one period) the leading terms in
a Fourier expansion can be found, and finally

€
27w,

. 27
(A) = fo F(A cost — wyA sind) singdo, (3)

where § = w,t + Y.

The right-hand sides are functions of the amplitude
A only since the time was averaged out over one
period. From (3),the amplitude A(f) as a function of
time ¢ can be computed.2 Lashinsky also considered
weakly nonlinear waves in bounded plasmas. He in-
vestigated the equation

(1/c2) ¢y —V2¢ = — €F(¢, ) 4
by using expansions of the type
¢ = XE a () $,(x). (5)

The orthogonality conditions of the ¢, and the period
averaging process result in similar equations like
3).

The averaging over the period was also used by
Tam.4 He considers the propagation of nonlinear
dispersive waves in a cold nondissipative plasma.
He uses a perturbation technique and introduces fast
and slow variables giving the periodic and the non-
linear (averaged) part of the solution. Also, Luke5
uses this method in his investigation of the non-
linear wave equation

(1/02)‘75“ —VZ2¢ = F(¢). (6)
He demonstrates that his technique is equivalent to
Whitham's averaged Lagrangian method,6~38

In this paper we extend Whitham's theory of the
averaged Lagrangian to dissipative waves. Tam?
points out that the effect of collisional dissipation on
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nonlinear dispersion is important. Collisional damp-
ing may reduce the effect of nonlinear instability.

DISPERSION RELATION AND AVERAGED
LAGRANGIAN

We consider waves ¢(x, t) which satisfy a strongly
nonlinear weakly dissipative partial differential equa-
tion of such a form that the linear wave equation can
be split off. Rotating our coordinate system so that
the wave vector k points into the direction of the x
axis we write for our wave equation

(1/02)¢u — Gae t bo + €8¢,
= — V'(¢) + eN(¢,) + €6,G(¢), (T)

where V', N, and G are nonlinear functions, V’ =
dV/d¢,and c,b,and g are constants which may de-
pend on w. € is a small parameter measuring the
weakness of the dissipative terms. We now define a
phase surface

6(x, t) = const, (8)
which has the property that all points (x, ¢) on it have

the same value of the wavefunction ¢. From (8) we
have

do = 0. dx + 8,dt = 0, 9)
so that points moving with the speed

dx — 90,

T = 5 (10)
see a constant phase 6. Defining wavenumber and
frequency by

6,=k —0,=w or §T9+w=o, (11)
we see that (10) is the phase speed. In the three-
dimensional case we have V8 = k, and therefore

curl k = 0, (12)

which indicates that wavecrests are neither vanishing
nor splitting into two or more crests.10 From (11)
and (12) the conservation equation of wavecrests,

Edq. (13), follows:

= +Vw= 0. (13)

In a similar way it can be shown10.11 that a point
moving with the group velocity

(%L - %% a4

sees w unchanged. After this disgression, we return
to Eq. (7). Its Lagrangian reads

L(p, ¢, ¢0) = (1/2) 303 — 202 — 2002 — V(). (15)
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Since the system is dissipative, the Euler Lagrange
equations read12-14

¢ oL 0 dL oL _

% 36, tar 36, 9 - €8¢, + eN(dy) + €6,G(9),
(16)

where N(¢,) may be of the form

N(¢y) = — ¢f1, 17

where n = 13,2,2 %, +*+. Substituting the Lagrangian
(15) into (16) we immediately obtain our wave equa-
tion (7). We will now make a classification of our
wave equation:

I. N=0,G =0, V' = 0: The equation is /inear; k and
w are independent of x and .

1. b = 0, g = 0: no dispersion, no dissipation;

¢ = Aeikx-iwt’ w =+ ck. (18)
2. b £ 0,g = 0: frequency dispersion, no dissipa-
tion;

¢ = Aeikr-iwt w=1=ck2 + b2)1/2. (19)
Any function w (&), with exception of the definition (18)
for ¢, is called a dispersion velation of a linear wave
equation. Such dispersion relations may also be
found by Laplace—Fourier transformation of the
linear wave equation.15

3. b= 0, g + 0: Dissipative case, g = €g;
¢ = Aeikx-ivt w=— 2igc2 £ c(k2 — $B2c2)1/2,
(20)

4. b + 0, g + 0: Dissipative case, ¢ like in (20);

D(w, k) = (w2/c2) — k2 — b + Ziw = 0. (21)

II. If neither N, G, nor V vanish, the wave equation is
nonlinear. If the nonlinearity is weak, which we de-
fine by

1 27 ~
(9,”,) =35 Jo f,,d9 = 0,

1 27 ~
(Og) = 3T fo 6:,d0 = 0, (22)

sothat 6, = k and §, = — w become constant “in the
average”, i.e,, when appearing under an integral foz "
<+ df, then a dispersion relation of a nonlinear wave
equation can be derived. It turns out that w is not
only a function of k (frequency dispersion), but also
of the amplitude A (emplitude dispersion). Using
Luke's method of stretched variables, an amplitude
dispersion relation can be derived also for sirongly
nonlinear waves.

In the dissipationless case (g = G = N = 0), Whitham
suggested®.7.16 the existence of a variational principle

0 oL

2 2L
2 3L L 23
ot 26, | 0 (@3)

3x 00,
for the averaged Lagrangian
1 27
L= [ L(6,6,,0,A)d0 = £(6,,0,4), (24)

and he assumed that the variation of £ with respect
to the amplitude A or to the energy E = 3 A2, i.e.,
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Lg=0 or £,=0 (25)
gives the dispersion relation of the nonlinear equa-
tion. Equations (13), (23), and (25) determine the
three functions k(x, t), w(x, t), and A(x, t). For exactly
linear nondissipative vibrations and waves the con-
dition (25) becomes1?

£ =0, (26)

This is trivial since L = T — U and the virial theorem
states for periodic motion that (T) = (U) so that the
dispersion relation for linear motions, i.e., Eq. (26)
follows from the virial theorem.

In the dissipative case a principle analogous to the
Whitham principle (23) may be found by averaging
(16). A proof of the result will be given in the next
chapter. We first rewrite (16) using

b = ¢(6). (27)
By substituting into (16) we get
o (de oL\ 3 (a6 oL\ _ 3L do
ox\d$ 06,/ 9t \dp 20, ~ 36 do

= ewgg% + €N ~— ed%?wG. (28)

By averaging now Eq. (28) with (1/27) [ -+ d¢ and
using (24) we obtain

LY
ox a6,

S & _egw (2rde 4,
at 26, ~ 2m “o db

€ 27 we T .do —
+ﬂf0 Ndgp— 5= GIFdp =Q. (29)
This is the variational principle which replaces (23)
in the dissipative case. (13) remains unchanged, and
an equation replacing (25) will be derived in the next
chapter in the course of proving (29).

THE TAM-LUKE METHOD APPLIED TO DISSIPA-
TIVE WAVES

As mentioned earlier, all equations necessary to de-
termine k(x, 1), w(x,?),and A(x,?) of (18) can be de-
rived4.5 using a special technique and without using a
Lagrangian. We now extend this technique to the dis-
sipative case. We prefer this technique because
Whitham's method gives wrong results in special
cases. (If one considers, e.g., (7), 15) for V=N =
G = g = 0,then (25) or (26) do not give the right dis-
persion relation which is given by (19). Whitham
thinks7 that this restriction of the form of the Lagran-
gian presumably corresponds to the assumption of
separability of the Hamilton-Jacobi equation in the
classical theory of adiabatic invariants.) Following
Luke, 5 we introduce sivetched variables by

X = ex, T = €t. (30)
In order to include relatively fast local oscillations
(through the dependence on the variable 6) and to take
care of the slow variations of A, k, and w (through the

dependence on the ‘stretched variables X and T), we
make the expansions

¢(x’ t) = U(@, X, T) + €U1(0: X7 T) + 0(62)! (31)
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V'(¢) = V'(U) + €U, V" (U) + O(€?), (32)
N(p,) = N(— Ugw) + €(Up — Uy g IN'(— Ugw) + 0(€2),
(33)
G($) = G(U) + €U,G'(U) + O(€2?). (34)

Substituting (31)-(34) into (7) we obtain by equating
the various powers of € (and neglecting €2-+°)

Ugo [(w2/c2) — k2)] + bU = — V'(U), (35)
which replaces (25) and

Uypo[(2/c2) — R2]+ bU, + U, V" (U) = F,  (36)
where

= (2/c2)Ugpw + 2Uyxk + (1/c2)Uqwy + Ugky
+ gUp + N(— wU,) + GO)U;. (3T

The dispersion relation is contained in (35). In order
to show that (36) is equivalent to (29) we first show
that U; = U, is a solution of the homogeneous equa-
tion (36). This is done by derivating (35) with respect
to 6 and showing that the result is identical to (36)
for F = 0. In order to solve (36), we then write

U, = W()Uy,; (38)
substituting into (36) one receives
[(w2/c2) — k2](Wyq Uy + 2WoUyg) = F. (39)

Using the identity

2 (URW,) = WyoUZ + 2W, Ugg Uy (40)

and multiplying (39) by U,, we obtain after elimina~
tion of W by (38) and integration

w2/ c2) — R2)(Uso Uy — UyUpg) = + [, FURd0.  (41)
In order to avoidl8 secular terms proportional to
integer powers of ¢, /; and U;, must be bounded.
But U, or U,, are not periodic and are unbounded
unless the integral in (41) is bounded for large 6.
Now, if U (and U, U, = — wU,) are periodic, then the
1ntegrals are bounded and secular terms can be
avoided. The integration has to be carried out only
up to the period 7. Multiplication of (35) by U, and
integration yields

U, = 2E(X, T) — bU2 — 2V(U) |1 /2[(w2/c?) — k2]-1/2. |
(42

Here the energy E(X, T) is an integration constant.
From (42) we see that U(6) is a periodic function:
For V = 0 we have a harmonic function, for V =
sinU or polynomial up to the fourth degree, U(6) is a
Jacobi elliptic function, and for higher polynomials
we have the inverse functions of hyperelliptic or
Abelian integrals representing also periodic func-
tions. If U is periodic, then U,, U, U, and F are
periodic. Then

fOTFUe d6 =0, (43)
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and from (37) we obtain

L (‘”f dU>+-é—<kf UdU)

oT 270
=_gwf0 U, dU — fo NAU + “’fo GU,dU  (44)

since, during one period 7, dU = U,d#. Skipping the
factor 1/2m, replacing 27 by T, We see from (30), (24),
and (15) that (44) is equlvalent to (29). QED

The three equations (13), (35) mstead of (25), and (44)
determine w(X, T), B(X, T), A(X, T) 2E(X, T). The
dispersion relation is obtained by mtegratlon of (42).
With an appropriate choice of the integration constant
we have

2 1/2
<w_2 — k2> fOT (2E — bU2 — 2V)1/2qU — 27
c

= D(w, Rk, E) =0, (45)
This relation contains E (and therefore the amplitude
A) and describes amplitude dispersion: w = w(k, E).
It may be also written in the form (25). (35) and (42)
are conservative equations; but (44) is not. If, how-

ever, N = g = G = 0,then also (44) reduces to the con-
servative case (23) and

A = V2E = const. (46)

This result may also be derived by the Krylov—
Bogolyubov method. For V' = 0, (35) has the generat-
ing solution

U= Asin(ab +vy), U, =Aa cos(ab +y), (47)
where A, o,¢ are constants and
b/a2 = (w2/c2) — k2. (48)

Now, for V' + 0 according to Krylov-Bogolyubov we
let A— A(6),¥ —/(6), and we then have from (47)

—A sin(a 8 + §)
+ A(a + ) cos(ab +y) (49)

Aa cos{af + )

and therefore (A =dA/d6)

A sin(a8 + ¢) + Ay cos(ad + ) = 0. (50)
s s a8 iy e T W)~ At )

— (a/B)V’ cos(ab + ), (51)

= (a/Ab)V’ sin(a b + ). (52)

Expanding V'(U) sin(a8 + ) [resp. V'(U) cos(ab + )]

into Fourier series and integrating (1/27) fzn sody
gives

_<A>_F 27,f V'(U) cosy dy (53)
—which might be compared to (3)—and
<4/> b 2,”f V/(U) sinydy. (54)

Via (47), (53) can be written fV'(A siny )d siny = 0,
and we then have the following.
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Theovem 1: For any nonlinear conservative wave
equation of the type (7) the amplitude A (and therefore
the energy E) is constant. Defining an effective fre-
quency

Q=a +{, (55)
we may write (47) in the form

U = A(6) sin([Qd6 + ¥,), (56)
where §, = const. Equation (54) and

6(x, 1) = kix, t)x — wix, H)! 57
then give a dispersion relation for Q.

Nonlinear dissipative case (V' = 0): From (7) we
now have

Uge [(w2/c2) — k2] + BU — egwl
= eN(—Ugw) — G, (58)

so that V' in (53) and (54) has to be replaced by

€1V - gwA(0)a cos(ad + ¢) + wG[A sin(af + )]

"A()a cos(ad + §) — N[—wAa cos(afd + )]

Then from (54) we have < i > = 0 and the following.

Theorem 2: For any nonlinear dissipative wave
equation of the type (7) the frequency w is not modi-
fied by the dissipation terms in first order of €.

The case b = 0 presents problems here, since in this
case the Krylov—Bogolyubov method cannot be ap-
plied to (35).

STABILITY

In many cases Eq.{35) cannot be solved exactly or
the wave equation is not of the type (7). In these
cases Lighthilll® proposed for conservative systems
an expansion of £, We would like to follow up a simi-
lar way for the dissipative case. In general, £ =
£{w, k,A). We are,however, able to eliminate, e.g.,

A from one of the three equations determining w, k,4
or from the amplitude dispersion relation. With £ =
£{w, k) we rewrite (29) by exchanging the order of
differentiation

O — 20518 + 0, , gy = 27Q. (59)
A similar equation,namely
1 T i ;| T T
=5 % [, udu -Se fo Udu + 6, J, UaU
T
+ 8, 2% Jo UpdU = g6, Jy UpdU + [y NaU

— 9, Jo GUAU (60)
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may be derived from (44).

This is a partial differential equation for 8(x,?). We
now expand £. Since £;, = 0 according to (36), £
measures exactly the derivation from the dispersion
relation of the linear equation. In order to make this
more explicit we expand

Llw, k) = L&(7,8) = a1 = alw — f(B)]?, (61)

where w, = f(&) is the dispersion relation of the li-
near equation,e.g.,{21). We then have the corres-
pondence
Fa a
_p2 28

i - a— 3 dant

gk ok T dw 8T
where 7 and k are now two independent variables.
Since then £, =0, £, = 2a7, £, = 2a, (59) takes
the form

8, +2f'6,, +(f'2—f"1)8, , =1Q/a. (62)

Since f = f(k), 6, = kx,),this is a quasilinear par-
tial differential equation for 6(x,?). Applying usual
characteristics method, see e.g., Ref. 20,0ne may
write (62) in the form

Ab,, +BO,, + C,, =1Q/a. (83)

Then the characteristics are:
Real (hyperbolic equation), if B2 — 4 AC = 4f"7> 0;
Complex (elliptic equation),if B2 —4AC = 4f "7 < 0.

We see that the dissipative term @ does not enter into
this condition. So for (61) we have the following the-
orem,

Theorem 3: (a) The effect of nonlinear terms on
the stability behavior is described by f“(%)-[w — f (E)].
The stability behavior of the linear equation,des-
cribed by wq = f(k) is not altered by nonlinear terms,
if f7(R) - [w — f(B)] > 0. K,however,f"(k) - [w — f{R}]
< 0,then the nonlinear terms may destabilize, an
otherwise stable solution of a linear equation.

(b) The inclusion of a dissipative term @ does not by
itself modify the character of the stability behavior;
but the time behavior of unstable and stable modes is
modified.

Examples and applications of this theorem will be
given in forthcoming papers.
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The structure of Choquet simplexes of equilibrium states of infinite system in quantum statistical mechanics is

investigated. It is shown that a facial simplex is a Bauer simplex whenever its extreme points form a physically
equivalent class; however, the simplex of KMS states for a given inverse temperature is nof a Bauer simplex

if it is not a singleton.

1. INTRODUCTION

In the algebraic approach of statistical mechanics, the
equilibrium state of infinite system is described by
the state (the normalized positive linear form) on a
suitable C*-algebra. Some important features of the
equilibrium states are their invariance under some
group (translations in Z?, or R?, Euclidean transfor-
mations, etc.), and their analytic property known as
the Kubo-Martin—Schwinger boundary condition. The
mathematical structure of the equilibrium states with
these properties, namely, the invariant states and
KMS states, have been intensely studied. In many
cases, the set of these states turns out to be a com-
pact convex set and a Choquet simplex, e.g., the set of
all states invariant.under a group G on a G-Abelian
C*-algebra,! and the set of all KMS states for a
given inverse temperature.2;3 Therefore, it would be
interesting to study the mathematical structure of
equilibrium states from the aspect of simplexes and
compact convex sets, which have been highly developed
and widely applied to different fields in mathematics, 4

The nice simplexes are those with closed extreme
boundary, namely, those of which the extreme points
form a closed set, i.e., Bauer simplexes.4 Hence, the
first step in our study of the equilibrium states in

this direction is to investigate whether they could form
nice simplexes.

For the set of invariant states under a group, a charac-
terization for a Bauer simplex has been found by
Stgrmer.5 Thus, we shall study mostly the character-
izations of simplexes of KMS states in the present
paper.

We begin with facial simplex (see definition in Sec. 3),
which in many cases turns out to be a Bauer simplex.
It is shown that a facial simplex of the state space of
a C*-algebra is a Bauer simplex if its extreme points
form a physically equivalent class. However, in gen-
eral, the simplex of KMS states is not a Bauer sim-
plex. First, we give a characterization for Bauer sim-
plex of KMS states on a separable C*-algebra, then,
we show that for a separable GCR C*-algebra, the set
of KMS states is nof a Bauer simplex if it is not a
singleton. And, a characterization for a separable
simple C*-algebra is found, which will be interested
in the quantum lattice system or the C*-algebra
associated with canonical anticommutation relation.
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In Sec. 2, we give some definitions and notations for
the compact convex sets and simplexes. We recall
some well-known results and show briefly that the

KMS states for a given inverse temperature form a
Choquet simplex from Refs. 2 and 3.

We study the facial simplexes in See.3. Our main
result in this section is Theorem 3.1, and we point out
that the simplex of KMS state is a facial simplex of
the simplex of invariant states under the time trans-
lation,

Section 4 deals with the simplexes of KMS states.

The characterization of a Bauer simplex is given in
Theorem 4.1. Theorem 4.2 shows the nonexistence of
Bauer simplex on a separable GCR algebra. A char-
acterization of Bauer simplex for a separable, simple
C*-algebra is in Theorem 4. 3,

We apply topological method in the proof of our the-
orems, and Theorems 4.1 and 4, 3 are two topological
characterizations for Bauer simplexes,

2. PRELIMINARIES

In this section we give some preliminary definitions
and notations and recall some well-known results,

Let X be a vector space and @ a convex subset of X,
A face of Q is a convex subset F of @ such that for all
x,9,2 € Q with 2 = Ax + (1 — )y, where 0 < a < 1,

z € F implies x,y € F. The extreme points of @, de-
noted by E(Q), are just the one-point faces of . We
note that if F is a face of Q, then E(F) C E(@).

If C is a conein X, i.e,,C is a subset of X such that
C+CcC,aCCC fora>0,and C N (—C) ={0}. We
order the elements of X by x = yify —x e C, Cisa
lattice cone if for each x and y in C there is a great-
est lower bound x A y in C. It follows that each pair
x,¥ € C have a least upper bound x V y in C, and in
fact both bounds exist for all elements in C — C (Ref.
6, pp. 59—-60). A base of C is an intersection of C with
a hyperplane H, where H is a hyperplane in X not con-
taining 0 that meets all generators of C,i.e., for all

x € C — {0}, there is an @ > 0 with ax € H. A convex
set K in X is called a simplex if it is the base of a
lattice cone. It is readily verified that a convex subset
F of K willbe a face of Kifandonly if x ¢ F, y € K,
and 0 = y = ax for some positive scalar « imply that
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In the algebraic approach of statistical mechanics, the
equilibrium state of infinite system is described by
the state (the normalized positive linear form) on a
suitable C*-algebra. Some important features of the
equilibrium states are their invariance under some
group (translations in Z?, or R?, Euclidean transfor-
mations, etc.), and their analytic property known as
the Kubo-Martin—Schwinger boundary condition. The
mathematical structure of the equilibrium states with
these properties, namely, the invariant states and
KMS states, have been intensely studied. In many
cases, the set of these states turns out to be a com-
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all states invariant.under a group G on a G-Abelian
C*-algebra,! and the set of all KMS states for a
given inverse temperature.2;3 Therefore, it would be
interesting to study the mathematical structure of
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boundary, namely, those of which the extreme points
form a closed set, i.e., Bauer simplexes.4 Hence, the
first step in our study of the equilibrium states in

this direction is to investigate whether they could form
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For the set of invariant states under a group, a charac-
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It is shown that a facial simplex of the state space of
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simple C*-algebra is found, which will be interested
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the compact convex sets and simplexes. We recall
some well-known results and show briefly that the

KMS states for a given inverse temperature form a
Choquet simplex from Refs. 2 and 3.

We study the facial simplexes in See.3. Our main
result in this section is Theorem 3.1, and we point out
that the simplex of KMS state is a facial simplex of
the simplex of invariant states under the time trans-
lation,

Section 4 deals with the simplexes of KMS states.

The characterization of a Bauer simplex is given in
Theorem 4.1. Theorem 4.2 shows the nonexistence of
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We apply topological method in the proof of our the-
orems, and Theorems 4.1 and 4, 3 are two topological
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A face of Q is a convex subset F of @ such that for all
x,9,2 € Q with 2 = Ax + (1 — )y, where 0 < a < 1,

z € F implies x,y € F. The extreme points of @, de-
noted by E(Q), are just the one-point faces of . We
note that if F is a face of Q, then E(F) C E(@).

If C is a conein X, i.e,,C is a subset of X such that
C+CcC,aCCC fora>0,and C N (—C) ={0}. We
order the elements of X by x = yify —x e C, Cisa
lattice cone if for each x and y in C there is a great-
est lower bound x A y in C. It follows that each pair
x,¥ € C have a least upper bound x V y in C, and in
fact both bounds exist for all elements in C — C (Ref.
6, pp. 59—-60). A base of C is an intersection of C with
a hyperplane H, where H is a hyperplane in X not con-
taining 0 that meets all generators of C,i.e., for all

x € C — {0}, there is an @ > 0 with ax € H. A convex
set K in X is called a simplex if it is the base of a
lattice cone. It is readily verified that a convex subset
F of K willbe a face of Kifandonly if x ¢ F, y € K,
and 0 = y = ax for some positive scalar « imply that
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y € F. We refer the reader to Refs. 4 and 6 for the
general theory of simplexes and compact convex sets.

Let X be a locally convex Hausdorff space and K a
compact convex subset of X. If K is a simplex, then

K is a Choquet simplex. Furthermore, a Bauer sim-
plex K is a Choquet simplex with the closed boundary,
hence its extreme points E(K ), which is not empty,
form a closed set in K, Hereafter a simplex will
mean a Choquet simplex in a locally convex Hausdorif
space.

In Ref, 7, Effros has introduced a topology on E(K) for
a simplex K, called the structure topology, whose
closed sets are exactly those sets E(F) for a closed
face of K. E(K) endowed with this topology is called
the structure space. This structure topology is T
and compact, but, in general, not Hausdorff. It is Haus-
dorff if and only if K is a Bauer simplex. Moreover,
this topology is weaker than the relative topology on
E(K) induced by the given topology of K. And, these
two topologies on E(K) coincide if and only if K is a
Bauer simplex.? A detailed study of the structure of
Choquet and Bauer simplexes can be found in Ref. 4.

Let % be a C*-algebra with identity 1. An ideal 7 of

o is called primitive if / is the kernel of an irredu-
cible representation of 9. We denote by Prim (%) the
set of all primitive ideals of % . Prim (%) can be topo-
logized by the hull-kernel operation as follows:

If S is a subset of Prim (%), then the kernel of S is the
closed ideal

E(S) =n {J;J € S u{U}}.
If J is any subset of %, let
={l € Prim (%); I 2 J},
this is called the Zull of J. Then
S = S™ = hk(S)

is the closure operation of the Jacobson topology on
Prim (%A). And, the closed subsets of Prim (%) are
just those of the form #(J), where J is any subset of
. The Jacobson topology is a T'-space (Ref. 8, Sec.
3.1).

We denote by S(2) the state space of U equipped with
the w *-topology. Let o, for / € R be a one-parameter
automorphism group of % such that the map ¢ — o,(x)
for x € 9 is continuous in the norm-topology of %, A
state ¢ € S(%) is said to be a “KMS state” with re-
spect to o, for a given inverse temperature g = 1/#7,
if it satisfies the KMS boundary condition, i.e., if

Jatft — iBeleo, (v = [ dtft)d(o,(y)x)

holds for all x,y € % and for any function f with
Fourier transform in D. We refer to Ref, 9 and the
references given there for further information about
KMS states. Most of our analysis in the next sec-
tions will not use explicitly the analytic properties of
KMS states, but their algebraic aspects.

If K, is the set of all KMS states of % with respect
to o, for a given 8, then K, is a compact convex sub-
set of S(%).% In fact K, can be shown as a simplex as
follows2,3:

Let C, be the positive cone associated with K, i.e
C, is the set of all positive linear functionals of %
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satisfying KMS boundary condition. More precisely,
Kg=Cy0 S(A) =CyN H,where H = {p e u*; (1) =
1} is the hyperplane in QI* the Banach dual of %.
Hence, we need only to show that C, is a lattice cone.

For a ¢ € Cy,let 7, be the cyclic representation in-
duced by ¢,and £ ‘the cyclic vector. Then the KMS
boundary condltlon can be extended to the weak-

closure 7 (9()” of 7 ( ), in fact, ¢(x) = w; o7 (x) for

xemw ¢(QI)” satisfies KMS condition with respec’c to

d,, the extension of 0, to 7 (%)",i.e.,0, is the modular

automorph1sm of m, (2A)". 2Ty C < C, and satisfies the

KMS condition with respect to §,, then Y/(x) = W, °
mx ) for x emy, (A)",withk € 9, and k = 0, whereé%

1s the center of m,(%A)” (Ref. 2; Theorem 15 4.)

Lety,,¥y € C4,then y; = wki§¢on¢ for k; € D with

k; = 0 (i = 1,2). Since 9, is an Abelian von Neumann
algebra, its self-adjoint part is a lattice, hence £, A
ky=ke9,. Lety = wk§¢ow¢,then Y is the g.l.b. of

Y, (i = 1,2). Clearly,y satisfies KMS condition,
hence ¥ € Cj. It follows that C is a lattice cone
associated with K.

Consequently, each ¢ € K, is the barycenter of a
unique maximal measure i from Choquet-Meyer's
uniqueness theorem. 4,6 Furthermore, it has been
shown by Emch et al10 that u, is the central measure
of ¢ in the sense of Sakai.ll However, we shall not
study any measure-theoretical aspect of K.M,S, states
in the present paper.

3. FACIAL SIMPLEXES

Let K be a compact convex subset of the state space
S(2A), which is endowed with the w *-topology, and E (X)
the extreme points of K. K is called a facial simplex
of S(%) if K is a simplex as well as K is a face of
S(2). Similarly, a facial simplex K of a compact con-
vex set H of S(%) is a simplex as well as K is a face
of H. However, by a facial simplex, without referring
to any compact convex subset of S(%), we shall mean
a facial simplex of S(¥).

In this section we shall show that in many cases a
facial simplex turns out to be a Bauer simplex,

For a simplex K in S(%), we have the following:

Proposition 3.1: Each closed face of a simplex K
is a facial simplex of K.

Proof: If F is a closed face of K, then F is a com-
pact convex subset of K. Let C, and C, be the cones
associated with F' and K, respectively. Since F is a
face of K, hence C, is an hevedilary subcone of C,,
i.e., for each ¢ €Cq, ¢ € Cy,and ¢y — ¢, € Cy
1mp1y ¢o € C;(Ref. 4,p.82). Furthermore,C, is a
lattice cone, hence C, is also a lattice cone from Ref.

6, p. 64: And Fis the base of C,, therefore F is a sim-
plex. By the given assumption, as F is a face of K,
thus F is a facial simplex of K.

An immediate consequence is:

Corollary 3.1: Each closed face of a facial sim-
plex is a facial simplex.

Furthermore, from the above proposition and Rogal-
ski's lemma [i.e., each compact convex subset of a
simplex K is a face of K, if its extreme points belong
to E(K ) (Ref. 12; lemme 28)], it is easy to show
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Corollary 3.2: Let F be a compact convex subset
of a simplex K. If E(F) C E(K), then F is a facial sim-
plex of K.

If F is a facial simplex of a Bauer simplex K, then F
is also a Bauer simplex, In fact, E(F) C E(K),then the
structure space E(F) is Hausdorff, since E(K) is Haus-
dorff. Thus we have

Proposition 3.2: Each facial simplex of a Bauer
simplex is a Bauer simplex.

If A is Abelian then each facial simplex turns out to
be a Bauer simplex., More precisely, we have

Proposition 3.3: If % is a C*-algebra with identity,
consider the following three conditions:

(i) % is Abelian;
(it) S() is a Bauer simplex;
(iii) Each facial simplex is a Bauer simplex.

Then, (1) <> (ii) = (iii).

(i) <> (ii) is well known. However, Bauer simplex
follows also from the fact that S(%) satisfies Stgrmer's
axiom.!13 (ii) = (iii) see Proposition 3. 2.

(iii) <= (ii) is not true, see Corollary 3. 3 below.

Before going to discuss facial simplexes of a non-
Abelian C*-algebra, we recall an equivalent relation
for states. Let p, ¢ € S(%), if 7, and 7, are the cyclic
representations induced by p and ¢, respectively. p
and ¢ are called physically equivalent if 7, and m,
have the same kernels, i.e., kern 7 , = kern 1r¢.14 A
subset M of S(%) forms a physically equivalent class
if all cyclic representations 7, induced by all ¢ € M
are physically equivalent. Since Prim (%) equipped
with the Jacobson topology is Ty-space;hence, for

I € Prim (%),{/} is not necessary closed. However,
{I} is closed in the Jacobson topology if and only if /
is a maximal primitive ideal (Ref.8; 3.1.4).

Let K be a compact convex subset of S(%), then E(K) is
nonempty. If K is a face of S(%), then E(K) < ES(%).
Moreover, if E(K) forms a physically equivalent class,
then all irreducible representations 7, induced by all
pure states ¢ from E(K) are corresponding to a pri-
mitive ideal 7, from Prim (%), such that kern 7, = I,
for all ¢ € E(K). The main property of I, is:

Proposition 3.4: Let K be a closed split facel3 of
S(%), E(K) the extreme points in K. If E(K) forms a
physically equivalent class, then the corresponding
primitive ideal [, of % is a maximal primitive ideal.

Proof: Suppose that there is a primitive ideal / €
Prim (%) such that 72 ;. Let 7 be the irreducible
representation of % corresponding to / such that kern
7 = I, then kern 7 D kern 7, where 7 is the irredu-
cible representation induced by each ¢ € E(K) such
that kern 7, = I, as described above. We note that
kern 7y =Ny kern 7, for all ¢ € E(K), hence

kern m 2 N kern m,
¢

for all ¢ € E(K). Thus, 7 is weakly contained in the
set of m, for all ¢ € E(K) (Ref.8;3. 4.5).

Let p be a pure state associated with 7,then p is a
w*-limit point of states associated with 7, for ¢ <
E(K) (Ref.8, Theorem 3. 4. 10). Hence,p isaw*-
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limit point of states ¢ of the form x = ¢ _(-) =
¢(x*x) for x € %. (Ref. 8, 2. 4.8). However, K is an
invariant face of S(¥) (Ref, 13, Proposition 7. 1); thus
¢, € K, and therefore p € K, Then, p € E(K); other-
wise p is not in ES(A). And, by the assumption, kern
7, = kern 7y, but 7, and 7 are (unitarily) equivalent;
therefore, kern 7 = kern 7, = kern g, and / = J,.

We are able to prove our main result in this section.

Theovem 3.1: Let % be a C*-algebra with identity
and K facial simplex on S(%). Suppose K is split (in
the sense of Ref. 13). If E(K) forms a physically equi-
valent class, then K is a Bauer simplex.

Proof: If K is a singleton, this theorem is trivial,
therefore we assume that K is not a singleton. Let
ES(¥) and Prim (%) be equipped with w *-topology and
Jacobson topology, respectively. We define a map ¢
from ES(¥) into Prim (%) by 6(p) = kern m, = 1, for
p € ES(%), I, € Prim (%), then ¢ is continuous (Ref.
13, p. 439). (In fact ¢ is also open and onto; however,
we do not need these properties here.)

By assumptions, E(K) € ES(¥) and E(K) forms a
physically equivalent class; hence

0:E(K) = {1},

where [, = kern 7, and 7, is irreducible representa-
tion induced by each ¢ € E(K).

We claim that 6-1({,}) = E&K ). Suppose that §-1({Z,})
x\E(K) % @,1et p €6 1({I,D\E(K) and 6(p) = I,, then
kern M, = kern 7,-7, can be considered as weakly
contained in 7, then by a similar argument given in
the proof of Proposition 3.4, p € K and hence p €
E(K).

Since K is not a singleton, I, is a maximal primitive
ideal from Proposition 3. 4, hence {/,} is closed in
the Jacobson topology. Therefore, due to the continu-
ity of 6,E(K,) = 0-1({L;}) is closed in the w *-topo-
logy, which completes the proof of theorem,

An immediate consequence is the following.

Corollary 3.3: For a simple C*-algebra %, every
facial simplex is a Bauer simplex.

A remark is given here as another consequence of
Theorem 3. 1: If U is separable and K is a facial sim-
plex, then the structure space E(K) is a complete
metric space, whenever E(K) forms a physically equi-
valent class. In fact, the structure topology and the
w*-topology are coincided, since E(K) is w *-closed,
and the w *-topology is metrizable for a separable C*-
algebra.

We note that the Choquet simplex K; of KMS states
defined in Sec. 2 is not a facial simplex of S(%); but

K, is a facial simplex of some compact convex sub-
set of S(%A). This can be seen as follows: Let % be a
C*-algebra equipped with a one-parameter automor-
phism group ¢, with suitable continuity, for ¢ € R, and
I(%) denote the compact convex subset of S(%) such
that ¢ € I(A) iff ¢ =¢poo, for allt € R, If A is asym-
ptotically Abelian with respect to the additive group
R (e.g.time translation), then K is a subset of ()2
Let ¢ € E(Kﬁ), then 7, is a factor representation on
3¢ 4,15 and the center of 7,(%)”, 3, = {1}, Let

g, N U(¢) = {rI}, where U(¢) is %he group of the
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unitary operators U, (¢), such that £ > U, (HforteR
is a unitary representation of R on 3 Thus it fol-
lows from Ref. 5, Corollary 5.5 that ¢ C E(I(?I)) for
any ¢ € E(K,). As K, is a compact convex subset of
I(%), which 1s known as a simplex, (see, e.g., Refs. 1
and 5), then from Corollary 3. 2 it follows that K, is a
facial simplex of 7(%).

4. SIMPLEXES OF KMS STATES

As we have noted in Sec. 2 that the set of KMS states
K, with respect to a fixed one-parameter automor-
phism o, of ¥ for a given inverse temperature § is a
simplex. Hence, the question of the structure of K
arises: Is K also a Bauer simplex, or does K, have
similar structure like facial simplexes ? We study
this problem in this section.

We assume hereafter that % is separable. From Ref.,
15, ¢ € E(Kp) if and only if ¢ is primary, thus the
kernel of 7, the cyclic representation induced by ¢ €
E(Kj), is a primitive ideal of % (Ref. 16, Corollaire 3).
We may define a map y: E(K;) = Prim (%) by

kern 7

y(¢) = )

where E(K;) and Prim (%) are endowed with the struc-
ture topology and the Jacobson topology, respectively.

Firstly, we want to show the continuity of y by apply-
ing a method given by Effro and Hahn,17

Let F be a closed subset of Prim (%), then F = h(J),
where J is a subset of A such that J = k(F). Define a
subset M, of K; by

Mp={¢p € K;;kern 1, 2 J},
then y"1(F) = E(KB) N M.

For ¢ € K, ={x €% ; ¢(x*x) = 0}, the left kernel
of ¢,is a two 51de ideal of % and I, =kern 7, .2 Take
the quotient space % /I, with a scalar product (x,,y,)
= ¢(y*x), where EA ancipy are equivalent class co -
taining x and y, respectlvely Thus, the completion of
A/ I is the representation space (}C of the cychc re-
presentatlon 7y with the cyclic vector £ ,here 1
is the identity of % : And,fora e ¥, = (a) is a boun-
ded linear operator on JC s Such that T, (a)x, = (ax) 6"
This is the usual GNS construction of 7. Moreover,
since I, is a two-sided ideal of A , we may also define
a bounded linear operator 'rr(a) (for acU)on ¥,
such that  7(a)x, = (xa),.

Forx € % ,thenx € kern 7, if and only if x € Iy,and
olx*x) = ||17¢ (x)£, 12 = 0 implies that

7T¢(x)y¢ - (xy)¢ = ¢1r(y)x¢ = ¢1r(y)(x1)¢

¢1r(y)7r¢(x)§¢ =0

I

forally € %. Hence, for any ¥ associated with 7, if
% € J then Y(x*x) = 0, and I, 2J. And, furthermore,
if Y € Ky, then kern 7, D J, so that § € M. There-
fore

M, =

» {¢> € Kg; ¢(x*x) = 0},

which is w -closed in K,. Moreover,if p=a¢ for
P eKB,andq; € My w1thoz >0, thenp € M. Thus,
M is a face of KB, so that E(MF) c E(KB),hence

y UF) = E(Mg
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which is closed in the structure topology on E(Kj).
Therefore, y is continuous in the structure topology.
And we have proved the following:

Lemma 4.1: Let % be a separable C*-algebra with
identity. If y is a map from E(K,) into Prim (%) de-
fined by y(¢) = kern 7, as descr1bed above, then y is
structurally continuous.

Furthermore, we say that E(K ) is decomposable in
the sense of ensembles, or briefly decomposable,as
follows (cf.Ref. 18): kern Ty, = kern 7, implies that

Ty, and 'rr¢2 are quasi-equivalent for any ¢4, ¢, €
E(K,).

For different temperature of KMS states, the above
condition is not true.2 However, it holds for a GCR
C*-algebra ¥ as follows:

Let ¢, € E(Ky) (¢ = 1,2),and kern T, = kern Ty, *

Since ¥ is GCR and 7, (z =1, 2) are 1factor represen—
tations, thus 1T¢ (i = 1 2) are quasi-equivalent to irre-
ducible representatlons m,(i = 1,2) (Ref,.8;5.5.3), It
follows that kern 7, = kern 7,, which implies that 7,
and 7, are equivalent (Ref. 8; 4.3.7). Consequently,
m, and 7, are quasi-equivalent.

1 2

Lemma 4.2: In addition to the assumption of

Lemma 4.1, if E(K,) is decomposable, then y is injec-
tive,up to the equlvalence

Proof: Let ¢4, ¢, € E(K
that kern Ty, = kern 7, then by the hypothesis, 7 5
and 7, are quasi- equlvalent Moreover, ¢, and ¢2
are separat1ng9 hence m, ( )" and 1r¢2( )” have sepa-
rating and cyclic vector §¢1 and £¢2, respectively. As
Ty, and Ty, are quasi-equivalent, they are also (unit-
arily) equivalent (Ref. 19, Theorem 3, p. 233). There-
fore ¢ = ¢,,up to the equivalence, which completes
the proof of Lemma 4, 2

g) with ¢, ¥ ¢,. Suppose

Let B be the range of v, i.e.,
Y(E(KB)) =B

then B is a subset of Prim (%). And,y is a surjective
mapping from the structure space E(K;) onto B.

Lemma 4.3: As the assumption given in Lemma
4.1,if y is surjective mapping from E(K ;) onto B,
then y is a (structurally) closed mapping.

Proof: Let F be a closed subset of E(K ), then F =
E(Kgz) N T,where Tisaw *-closed face of KB Itis
easy to see that y(F) C h(J) for some J C A. In fact,
we have h(J) = {kern 7, € B;kern 1, 2 J} with J =
Nger kern m,.

Conversely, we have to show: y(F) D h(J). Let 1,
kern n, € h(J), then there is a state p < E(Kpy) such
that v (p) = 1,, since AE(K,)) = B. Hence we need
only to show that peT.

Since I, =kernm, O ﬂ¢i€F kern m, , thus p is a w*-

limit of finite linear combmatlons of states associated
with LY for all ¢, € F (Ref. 8, Theoreme 3. 4. 4), i.e.,
1
n
j— * N 3
p=w 11,}n ?Aiwgioﬂpi

J. Math. Phys., Vol. 13, No. 8, August 1972



1134 ETANG

with Z," A;=1and { € &, , which is the representa-
tion space of 7, . ’

Furthermore, since ¢ € F is a KMS state, ¢ is
separating.® Hence &, = [1(A)§,] = [7,(%)'§,].2°

Letn=x"¢ forx’ € 7, (%), then w o7, = Wyrg

Ty = x’l|12¢. For ¢ € 3y, wgom, is a norm limit of

states w o m,, thus wyom, = a¢ with o= flx’|2. Con-

sequently, 2, A weomy = @25 X, ¢, with & = max
1

{o;;8 =1,2,...,n},and also its w*-limit p, viz.p <

a2; 1, ¢,. However, T is a convex subset of Kg,

hence 2 X;¢; € T. Therefore,as T is a face of K,
p € T, the proof of Lemma 4.3 is complete.

Let E(K;) be endowed with the relative topology which
is induced by the w*-topology of K; and the map from
E(Kg) into Prim (%) be denoted by 6. In fact 6 and y
are the same map having a domain with different
topologies. Since the relative topology is stronger
than the structure topology,? thus § is also continuous
from Lemma 4.1. We denote by B the range of §
again, then we are able to give a characterization for
the structure of K; as follows:

Theovem 4.1: Let ¥ be a separable C*-algebra
with identity and 6 the map from E(K ) onto B;here
E(K,) is endowed with the relative topology and B C
Prim (%). If E(K;) is decomposable, then K, is a
Bauer simplex if and only if 6 is a closed mapping.

Proof: Consider the following commutative dia-
gram

L
E(K,) — E(K,)
(structure topology) (relative topology)

v ]
B

where t is the identity map. Then, we have
t=08"1oy,

By the given hypothesis, 6 is closed and also contin-
uous from the previous argument. Hence 6 is a
homeomorphism, and § -1 is continuous. Furthermore,
the continuity of y follows from Lemma 4. 1, there-
fore L is a continuous identity map, which implies that
the structure topology is stronger than the relative
topology. It follows that two topologies on E(K ) coin-
cide. Hence E(K;) is compact in the relative topology,
and so E(K B) is w*~compact. Therefore K g is a Bauer ,
simplex.

Conversely, if K is a Bauer simplex, then the struc-
ture topology and the weak topology are coincided.4
And, from Lemma 4, 3,y is structurally closed; there-
fore 6 is also closed.

As we have noted that E(K ) is decomposable for a
GCR C *-algebra, therefore we may apply the above
theorem to show the nonexistence of Bauer simplex in
a GCR algebra.

Theorem 4.2: Let % be a separable, GCR C*-
algebra with identity. If K is not a singleton, then K
is not a Bauer simplex.
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Proof: We need only to show a counter example
that 6 given in Theorem 4.1 is not closed.

Let % be a separable, GCR C*-algebra with identity,
equipped with a one-parameter automorphism 0,.
Suppose U has a faithful primary KMS state with
respect to 0,. Since 8 is closed in the w*-topology
(which coincides with the relative topology now), hence
6(E(K;)) = B is closed in Prim (%), so that B = k(J) =
I € Prim (%); I 2 J} for some subset J of A . K
E(K;) has a faithful primary KMS state, then B =
Prim (%); consequently, every primitive ideal of U is
the kernel of the cyclic representation induced by a
K.M.S, state. We construct a counter example sug-
gested by Takesaki?1 as follows:

Let 3 be a separable Hilbert space with an ortho-
normal basis 1£,;%2=1,2,--+}, and u be a isometric
map of X defined by

ugn:£n+17 n:]-’z’"'-

If e, is the projection of & onto C§,, n=1,2,---,
For a sequence {1} € I1 with x> 0, put
=201,
Then % is a modular operator on 3. If 23°°, A, =1,
k induces a faithful normal state of ®(JC), the algebra
of all bounded operators on JC: And, the modular auto-
morphism group of the state is induced by the one-
parameter unitary group
o0
Rit=33 Aite .
n=1
Let % be the C*-algebra generated by u and u* de-
fined above. Then it is known that % contains the C*-
algebra €(3¢) of all compact operators on JC,and % /
C() is isomorphic to the algebra C(I') of all contin-
uous functions of the unit circle I' = {x € C;[x| = 1},
For a suitable choice of {A,}, we want to show that

REEAR -1 =9,
In fact, foru € %,

o0 0

ityh-it — pit -it — pit =it

hituh~it = pity Z}l Ajite, =hi Z;l X\ itue,
ne n=

o0 [ce]
= hit 21 Nite, qu = El AiE o xsite o u
n= n=

co A it
_ ntl
B lin§1< An > e,”ljl .

Let A, = 1/27,then 2,7 A, =landx,;/x, = 3;
hence

@ it
hitun-it = 7, (;—)l €1l

n=1
_ ]__it x _ lit
= <2) <nZ=)1en+1> u = <2> u e A

Therefore, kituh -t € %, and the one-parameter auto-
morphism group o,(x) = kitxh-i of B(3) is also a
one-parameter automorphism group of A, However,
u — 0,(u) =[1 — (3)i*]u is not a compact operator on
J¢. Consider a state ¢ defined by

¢(x) = Tr(xk),
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then ¢ is a faithful KMS state of % with respect to

0,. Since ¥ is o-weakly dense in (), we know that
7,(A)” is isomorphic to B(3). Hence ¢ is primary,
i.e., ¢ € E(K,) for § = 1. Obviously, kern 7, = {0}.
Therefore, ¥ has a faithful primary KMS state ¢

with respect to 0,, and 6(E(K;)) = Prim (%). On the
other hand, the automorphism o, of % induces natur-
ally a one-parameter automorphism group &, of ¥ /
@(Jc). Since o,(u) —u ¢ C(¥), hence 0, is not a trivial
automorphism on the Abelian C*-algebra %/C(%). How-
ever, any nontrivial one-parameter automorphism
group of an Abelian C*-algebra cannot induce a

KMS state at all. Therefore, every primitive ideal

of %, which contains ©(3c), is not the left kernel of any
KMS state with respect to o,.

In quantum statistical mechanics, the C*-algebra of
quantum lattice system and the C*-algebra associated
with the canonical anticommutation relations are
separable and simple. Hence we are interested in the
structure of K in these cases. As ¥ is simple, Prim
(2) = {0}, hence the method given in the proof of
Theorem 4. 1 does not work for this case, since y -
and 61 cannot exist, However we give another char-
acterization of the structure of K for this case.

1

Let X, Y be topological spaces and y a mapping of X
into Y. y is said to be proper if y is continuous and
the mapping y X ¢, :X X Z—= Y X Z is closed for
every topological space Z, where ¢, is the identity
mapping of Z onto itself (Ref. 22, p. 97).

We return to mapping 6 : E(K,) = Prim (%) = {0}, here
E(K,) is endowed with the relative topology induced
by the w *-topology of K.

Then § is proper if and only if E(K,) is a compact
space (Ref.22,p.103). Hence E(K ;) is w*-compact,
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and E(K ) is w*-closed in K;, i.e., K is a Bauer sim-
plex. We have therefore the following characteriza-
tion:

Theovem 4.3: Let ¥ be a separable, simple C*-
algebra with a one-parameter automorphism group
o,. Then, K, is a Bauer simplex if and only if the
mapping 6: E(K ;) = Prim (%) is proper, where E(K )
is equipped with the relative topology.

We note from the previous arguments that this char-
acterization holds not only for a simple C*-algebra,
but also for a separable C*-algebra % such that Prim
(%) is a singleton. An immediate example: % has only
one irreducible representation, then it turns out ¥ =
©(3e), the C*-algebra of all compact operators on a
Hilbert space & (see e.g.Ref.11,p.236). This is a
special case of a separable, simple, GCR C*-algebra.
However, for any separable, simple, GCR C*-algebra
A, it is easy to verify, from the proof of Lemma 4. 2,
that E(K,) is a singleton, hence the mapping 6 : E(K 8)
— Prim (%) in the Theorem 4. 3 is proper. There-
fore, we have an immediate

Corollary 4. 1: I ¥ is a separable, simple, GCR
C*-algebra with a one-parameter automorphism
group o,, then K, is a Bauer simplex.

Actually, by Krein—Milman theorem, K ; is a singleton
in this case.
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Hypergeometric Structure of the Generalized Veneziano Amplitudes
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A multiple integral representation for a function of n{n — 1)/2 variables, which reduces to the (n + 3)-point
generalized Veneziano amplitude for unit values of the variables, is integrated out once to obtain a recurrence
formula for the amplitude. The result of complete integration obtained through repeated use of the recurrence
formula is shown to belong to a class of generalized hypergeometric functions of many variables which are
similar to but are more complex than the Lauricella functions. It is shown also that the (n + 3)-point ampli-
tude for n = 3 can be represented as a linear combination of an infinite number of , ,, F,[1] series with varying

parameters.

1. INTRODUCTION

It is well known that the four- and five-point ampli-
tudes are representable as the values for x = 1 of
the hypergeometric functions ,F,[x] and zF,[x],re
spectively. However,one will easily be convinced
that this simple property of representing the n-point
function in terms of a suitable ,F,[1] does not extend
beyond n» = 5. On the other hand 1t was pointed out
recently that the n-point functlons may be regarded
as the boundary values of a class of generalized
hypergeometric functions that are Radon transforms
of products of linear forms.l While it is undoubtedly
an elegant way of describing the structure of these
functions, it would still be desirable to bring out ex-
|

Va0 1y ooy OpusQi1seees@py30ngseceyOnpyqseses

Oy 1,10 1,25 %1 | Wo1s oo s W0y 3W1as oo e Wy

plicitly the hypergeometric nature of the functions
on a more concrete and familiar bases.

In this paper it will be shown that the generalized
Veneziano amplitudes can be represented as the
boundary values of generalized hypergeometric func-
tions of many variables of Lauricella type.2 In addi-
tion, it will be shown that the (n + 3)-point functions
for » = 3 can also be represented as a linear com-
bination of ., Fn[l] series with varying parameters.

2. SOLUTIONS

Let us first define a function V, of variables w,; given
as below:

3 Wye1,n)

= f f H {du u%‘ (1 R ,)alt [1 — u<wi-k,i ’;l_;lzui'j'lﬂaki-k'l}' (1)

By regarding «;; to be functions of n + 3 external par-
ticle momenta pl,pz, ««esD,.3, V, may be looked upon
as depending parametrically on these momenta, in ad-
dition to its being a function of the variables w,;,
Notice then that V, can readily be made to correspond
to the known representation for the (z + 3)-point func-
tion, for example, B, ,;(PgsP 15« - - » Pu+2) Elven by
Bardakci and Ruegg.3 Moreover,forw,; =1, i=1,
2,...,n, V, will be seen to be eas11y 1dent1f1ab1e,
through a change of variables x, = IT; 1uk,for i=1,
2,...,n,with the function F® (a,, b;, C;; ;w;;) defined in
Ref. 1.

With evaluation of Eq.(1) in mind consider the follow-

ing relation4;
1
oy s-1 o, ;-1
fo duu, 0 (1 —uy) H

Ok, i~k
k,i—k+1 — B(QOi!a]_i)

1]
X T =, )

x T (0, B, 5-9)(— 0;1,%;1)
(ogy + ;5B)(1,7550)  +(1,74)

x (xil)”z.i—l vee (xi,i—l)ril . (2)

@y i1s¥2-1) "=

In Eq.(2) B stands for the beta function, the notation
{(a,7) under the summation symbol stands for the
Pochhammer symbol (@), = T'(a + v)/ T (a) for ease
of printing,and we set

p

k=p-g+1

pP=2,3,...,n,
g=12,...,p—1. (3)

Vi p-rels

Further,the sum in Eq. (2) equals FD(ozo,, Qg ;15
— Qg pyeeey— Q1i0p; T 0%,k z_1),where
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F,, denotes one of the Lauricella functions which are
a generalization to many variables of Appell's double
series F;, i = 1,2,3,and 4,for two variables,2 which
in turn represent a generalization of Gauss' hyper-
geometric function of a single variable.

If we assume from now on thatw, ; ; = l,fori=1,
2,...,n,we observe that we can carry out the integra-
tion in Eq. (1) in a successive manner by the use of
Eq.(2) with x; .y =, ,TIEZ, g fori=2,3,...,n
and £ = 2,3,...,i. Thus, the first integration over

u, gives rise to

2 00n3 By 1s e e ey Oppieeni Oyl Lgss e,
sLw, 5,31 = Blag,, a,,)

X3 (00,98 )= 1579 5o1) " (=01 7,q)
(aOn + aln’Bn.n-l)(l’rz,n—l). (1’ nl)

V(agyse--

won;-c-

- (w()n)rﬂl

X V,.1(0gy + Bprs e e3P poy + Byp-1s

X (wn_z,n)'rz,n-l (wn_a,n)"s,n—z .
A TN T DU T A b 1Y) PP
wo_n_l;--.;1,71)"_3'”_1;1). (4)

It is to be realized that Eq.(4) represents a recur-
rence formula for V.,

A repeated use for m times of the recurrence for-
mula leads to%

m
Vn = SQI{B(ao,n-s+1’a1,n-s+1)

x [ 2

T ()
=0 Ttr2,n-s-t (ao,n—s+1 + al.n—s+1’6n-s+1)

(G pmge11 6 11)
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(_ at+2,n-s-t "rt+2,n—s-t) (

X wn-s-t-l,n's+1)rt+2'"_s_‘:|(
(1’ Y142, n-s-t )

x Vn-m(a01 + 5%}1)) b ’ao.n-m +'61(1'1)m; . ';an—m,l |
X 1,Wo05+ s e W noms o3 LsWyo ez pomi 1)y (5)
where we set
n
ko= 3 B (6)
Yq pebtier | P9
and
6(,,)_\0, forn=37=1,
i .‘(Bj,]‘—l + ),;_z,n-j, forn=2,3,"--andj =1,

2,...,n— 1 with ;5 =20
= 0. (M

Note that a use has been made of the relation
(ag; + %", B5 1)

(@g; T ay; +yims B0

Blag; + v, 0q))

v, = B(aon:a1n)B(ao,n—1r°‘1,n—1)' ** Blagy,aq4)
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= Blay; + 6{,04;)
(v ﬁ(n))
o
= Blag;, ;) —— I ——, (8)
(a0j+ alj,éj )

which follows from the identity (a,n + 2) = (a + k,n)
(a, k), in obtaining Eq.(5).

When m = n— 1,we are left with ¥} which can be eval-
uated as

Vilag, + Yﬁ’"—lall 1) = Blag, + 6(1"), @)
= Blagy, 1)y, 60) agy + 01,65™), (9)

where we noted y47~1 = §{? from Eq. (7). Upon sub-
stitution of Eq.(9) into Eq. (5) it is seen that the re-
sult of complete integration for V, is given by Eq. (5)
with replacements m = n, V= 1,and [12;§"1[--.] —
(%1:6(1"))/(0‘01 + 0y, 8%) for s =n.

If the result thus obtained is written out in the expand-
ed form,namely,

(005 09N( g 1,08 * * (atgy, 89

xE E . e 2

"1 "na,1, "2

Yor oo™ Yo n (aon + Qy,, 5(:))(01 Om-1 + ¥y -1 5,(,'1)1)' ot (0101 + a4, 5(11))

(=g, 7 ) O, To0) (=0 1,70 ,0)

x (= 0, 1371 (= 01,1571, 0120V g 2)

1,7, (7,3 DA, 7, 0) (L,7)(1,755) "

X Wo,"mWq 1 "n-11Wy, Tn-12 Wog21W gz 0 Wy, 21

V, isreadily recognizedtocorrespondtoa generaliza-
tion of the Gauss' hypergeometric function to a func-
tion of variables wgs, ..., Wq, W13, <« = s Wy y5 3 W, 0,
whose number totals n(n — 1)/2. We observe that the
above result for V, which is renamed here as

cey O, 1505 ,0e, 03, 0]se;

Glagy, .., aq, 0y, .

ology + 015,00, Foag,llwg,, ... wg,;

WigseesrWyyyeeo ;wn-Z,n)’

possesses a structure whose expansion coefficients
are similar to but are more complex than those of
Lauricella functions F ,, Fy, F, and F,. That is, the co-

efficients are of type which is closer to

(aym +n +p)B,m +n)@’,p)
X [y, m)y",m)(y", )(1, m)(1,m)(1, p)] -1

mentioned on p. 115 of Ref. 2 than those for Lauricella
functions. One could possibly regard G, as a generali-
zation of Fy(0;B1,...,8,;¥;%1,...,%,) to a function
with z of a's (i.e.,a4;,1=1,2,...7n),n(n — 1)/2 of

ﬁ'S (i-e:, 021’ M ] (12"_1;031, cey as,n-z; e ;anl)’n
of y's (i.e.,ay;, + @y;,2=1,2,...,7) and n(n— 1)/2
of variables (i.e.,wqy,...,Wy, ;% 3,
wn—2.n)°

It is of some interest to note that V) can also be re-

presented as a linear combination of ,, ,F[w,,] with
varying parameters. To see this, let us use the rela-
tion expressed by the latter half of Eq. (8) to rewrite

cosWiieees;

(1,731

(10)

y

—

the final expression for V, which is obtainable from
Eq. (5) in the manner prescribed earlier.

By so doing, we have

N ﬁ 3"_1—51_1[ Z; (_at+2.n-s—t7 7t+z,n-s- t)
n = -
s=1] =0 Tti2,m-s5-¢ (1’7t+2.n—s—t)

x (wn-s—t.n—s+1) 7t+2,n—s-t—,

X B(aO,n—s+l + 6,(1?)3+1,01'n_s+1)'§ ’ (11)
where we take 11723 .e.]=1for s = n. If we single
out 7,, and write

Gj(n) =7,, + Ej(n)’ a2)
we obtain
Blag; + 8§, 0,) = {(ay; + ef,7,,)
X [(ag; + aq; + €7, 7,1)]- 1} Blag, + €, a,)).  (13)

Then the sum of all terms that contain » , ,namely,
the product for j = 1,2, ..., n of the first factor on
the right-hand side of Eq.(13) and the factor (— ¢o,,,
¥, Hwg1)™1/(1,7, ) that represents the { = n — 2 con-
tribution of the s = 1 part of Eq.(11),add up to form

an ,, F,[w,,]. Thus we obtain

r (n-s51
n=f T

t+2,n-s-1

(— Qpro p-s—t? 7}+2,n—s-t)

(1,742 p-s-0)

r —e—
x (wn—s—t-l.n-s+1) tr2mosoi
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+

n=s+l? al,n-s+l)

< F [a01+ eP,..
n+l'n
gyt t ei"),...,a0n+ ay, + el

(14)

where it is understood that the beta function alone

be retained for » = 1 and the prime on the product
symbol for ¢ indicates that the contribution from
t=n—s—11for s =1 (i.e.,,t = n — 2) is to be delet-
ed.

Returning to the determination of ej(") forn=2,3,:--

[the case of n = 1 is of no interest since we have
5](1:) = 0for n =35 =1 from Eq.(7)],we find from Eq.

(7) that

X B (ao,n-s+1

<3 %p, + 6(7:‘),'— 1%,

n-1
B4 +yrlnlj 4 T
N k=n-jrl
for j = 1,2,...,”— 1

Vi nkels

— S
6,7(n) - Zn—l
-2 kon-kel, fOI‘j = n.
(15)

We may point out that the result for V, given by Eq.
(14) can also be obtained directly through stepwise
integration in the direction opposite to that we adopt-
ed,that is, by using the result for V, in evaluating
V,, for n=2,3,4,---. Thus,in evaluating V, we may
first obtain B(agg,®15) oF [ ga, — Ayq;000 + 0y 5;
woqt1) bY integrating it over u, and then B(aggy, @y 5)
B(@g1s ¥11)3F o[ Bg1) Gy Ggq5 001 + 0,000 + 01 5;
Wyo] by integrating over u, with the help of the well-
known formula on the integration of o .6 Proceeding,
to V5 we may integrate first over u, and u, by ex-
panding the factors (1 — wg,uqit5) %1 and (1 —

w, gUqai)%22. That part of the integration becomes a
superposition of integrals which are of the same form
as for V,,i.e., ;Fylw ,u,]. The remaining integration
over u, gives rise to a 4F,[w,;] again by the formula
mentioned above. In this manner it is clear that an
expression for V, as given by Eq. (14) can be found by
this procedure.

3. REMARKS

In what follows we will give some remarks that have
to do with the generalized Veneziano amplitudes of
various orders.

(1) As was mentioned in the beginning the (n + 3)-
point function is given as the value for w;; = 1 of the
hypergeometric expressions for V,,namely, Eq.(10)
or Eq.(14),

(2) The function F ("Xa , b, Cipp W l.j) which derivesfrom
Eq. (1) by taking wy; = 1 for ¢ =1,2,...,n does not
directly lend itself to the method of integration used
in the above. This is because the method presupposes
integrals of the type that appears in Eq.(2) which
corresponds to taking w;_ , ; = 1, rather thanw,; = 1,
in Eq.(1). Nonetheless,we can indirectly apply the
method to F® by expanding (1 —w,_, ; %)%t and
considering, with wy; = 1,2/[(— ay; + 1,7 4;)w,;_ 4 ;)7/
(1,7 Jugoi*71i"1(1 — u;)*~" in place of ufoi 1(1 —
wai~1in Eq.(2).

MANO

(3) In spite of the fact that the four- and five-point
functions are representable as a single term oF4[1]
and 4F,[1] series, respectively, it is clear from Eq,
(14) that such a property is no longer available for

(rn + 3)-point functions with # = 3. That is, except for
n =1 and 2 for which & = 0 and € = 0, respective-
ly,hold,an (n + 3)~point function is represented
generally by a linear combination of an infinite num-
ber of . F,[1] series with varying parameters.

(4) Here we point out the relationship that exists
between the Appell's or Lauricella's functions and
the F® function of Ref. 1 {and hence the (# + 3)-point
function when u;; = 1].

First, we note that there exists an integral represent-
ation for the Appell's F;(a,a’;8,8’;v;x,y) function
given in terms of a ,F function.” With the choice of

¥ =1andy =w,, the F; becomes expressible in
terms of a 3F,[w, ,] [or an F®(w, ,)], which implies
that the five-point function may be given as an appropri-
ate Fa(..;..;..;1,1).

Next, if we take ¥ = — 1 and y = w,, in the double in-
tegral representation for8 F(a;8,8';y,y;x,y) and
expand the factor (1 + £)-2 in the integrand by writ-
ing £ = u —w,,v,we obtain an expression that gives
the Fy(..;..;..;— 1,w,,) as a linear combination of
F@)(, ;w,,). It follows from this that Foliis.u5.0;
— 1,1) is expressible as a superposition of five-
point functions. Conversely, if we expand the factor
g2 =[1—(1— !;‘)lclz that appears in the integral re-
presentation for F2)(a,,b,,c,,;w,,) (for integration
variables u and v) in powers of 1 — & = 1 — (u — w, ,0)
and further choose w;, = 1, we see that a five-point
funcltionlc)an be given as a superposition of Fy(..;..;
1, .

Finally, in the n-fold integral representation for the

Lauricella function.9 Falo;By,...,8, vy - 2 Yai¥ 1
..,%,) we may write the expression 1 — wx; as
n m
1 —_Euixi =1 —Z.(ui—wijuj) =1-2 9y,
i=1 i<j i=1

Here we set
i-1
xiz(n_i)"‘z_\/wki fOI‘i:l,Z,...,n
k=1
(with 761 w,; = 0 for 7 = 1) and labeled y, such that

yn-l = ul _wlnun’

Y = Upq _wn—l,n Uy s

Yy = Uy~ Wiglhp,een,
yn — uz _w23u3, ey,
wherem = n(n — 1)/ 2. If we recall the multinomial

expansion
LS (a7 +7y,+ o +7.)
<1 —Z)y,) =y =12 =
i=1 (1771)“.(1)1’7,1)

[which may also be written as F, (a; k1, k5, ..,K,,;
KisKgyeoyKpm3¥1,Yas .0 059,)], the E; under consider-
ation is expressed as a linear combination of FO(. .,
ey 71+ o3V psW;;). By taking wy; = 1 it follows that
Fu(..5..5..5m—1,n—=3,...,—(n—3),— (n— 1))
can be given as a superposition of F@(..,..,r,,..,
Y Wiy = 1) or (n + 3)-point functions.

y171 . .ym‘rm
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4 In Eq.(2) and similar expressions that follow the summation in-
dexes r , and their limits 0 and « are often left out. The validity
of Eq. (25 may be seen by applying the binomial theorem to the
terms with £ = 2,3,...,7 on the left-hand side. See also Eq.(4),
p.114,and Eq.(8),p.116, of Ref.2.

5 The product notation H[E - - -] for the summation symbol is used
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for the sole benefit of the operational convenience.

€ See,for example, Y.L, Luke, The Special Functions and Their

Approximations (Academic ,New York, 1969), Vol. 1, Eq.(10),p. 58.

7 Equation (11),p.35,Ref. 2.
8 Equation (2),p. 28, Ref. 2.
9 Equation (5),p.115,Ref. 2.

Is the Maxwell Field Local?*
Y. Avishai, H. Ekstein, and J. E. Moyal

Aygonne National Laboralory, Argonne, Illinois 60439
(Received 8 November 1971; Revised Manuscript Received 30 March 1972)

Is the classical Maxwell field truly local ? This question is raised by several observations, among them the
Aharonov-Bohm effect; but the question cannot be answered without a systematic definition and characterization
of local subalgebras of observables. This paper reformulates classical field theory in analogy to axiomatic
quantum field theory and introduces a precise statement for local independence. (Synonyms for local independ-
ence are Einstein causality and principle of maximum signal velocity.) The formal answer of the analysis is:
The free Maxwell field does nof have local independence. This conclusion is critically discussed.

1. INTRODUCTION

It is distressing to see a field act where it isn't, as
in the Aharonov—Bohm effect.1.2 Such an experience
necessarily brings up the question: Is the Maxwell
field local ? And this question inevitably evokes the
counterquestion: What does locality mean?3.4 Be-
cause of the unsatisfactory state of quantum electro-
dynamics, and of the absence of a precise definition
of locality in classical field theory and in particle
quantum mechanics, the debate on these questions
has necessarily been characterized by a certain
vagueness both of the physical interpretation and of
the structure of the mathematical theory. But the key
- to the riddle may be in the more elementary theory
of the free Maxwell field—quantized or even clas-
sical—and these theories are simple enough to be dis-
cussed rigorously.

Is even the free Maxwell field local ? This question is
not frivolous. The constraint divB = 0 implies that
the magnetic flux through one hemisphere determines
the flux through the other, simultaneously in some
reference frame. This may be taken as a violation of
locality, because the state in some space~-time
region causes a constraint on the state in another
spacelike region. Clearly, a moreprecise definition
of the concepts is called for, and we have attemptedto
give a clear answer—at least for the classical free Max-
well field. This turns out to be anontrivial task. For-
tunately, a mathematically and interpretatively satis-
factory formulation of local independence for classi-
cal physics is now available.5 (Synonyms for local
independence are Einstein causality and maximum
signal velocity.) While the concomitant concepts of
the algebra of observables and its local subalgebras
have been defined and discussed for quantum field
theory,6-8 we had to do this long-overdue job for
classical field theory. Fortunately, the well-known
difficulty of integrating and differentiating in function
space has not been an obstacle for our purpose. While
the mathematical problem turns out to be simpler
than anticipated, we have not been able to give a con-
clusive answer to the physical question.

The main point of physical interpretation that distin-
guishes the present paper from the large literature
on the subject concerns the precise definition of
locality or, more felicitously, local independence.
While quantum field theory has always had—or has
claimed to have—a precise theoretical expression for

locality through the commutativity of local operators
at spacelike points, the concept of locality in particle
quantum theory and in classical field theory has re-
mained imprecise (“informal” in Bohm's languageZ2)
until recently.

Of course, special consequences of local independence
are known in classical field theory. In particular, for
linear partial differential equations the Green's func-
tion must vanish outside the light cone. This condi-
tion, however, is not sufficient; although the vector
potential A, has this property, it is reputed to be non-
local.

2. POSTULATES COMMON TO CLASSICAL AND
QUANTUM THEORIES

In order to study the consequences of the postulate of
local independence for classical and quantum theo-
ries, it is desirable first to state the postulate in an
operational manner without theoretical prejudices

and then to combine it with the theoretical postulates
of the two theories. For this purpose, classical

theory is formulated so that it shares the general con-
ceptual and mathematical framework that is custom-
ary for quantum theory.

Classical physics is then obtained as a special case
rather than as a limit of a sequence of quantum theo-
ries. This approach is suggested by two previous
developments. The first, by one of the present
authors, is a reformulation of quantum mechanics? in
which the algebra of observables appears as an alge-
bra of functions—commutative for the classical
theory and noncommutative for the quantum theory.
The other is Prosser's unified theory of nonrelativis-
tic particles.10

We assume a topological algebra U of observables,
some of whose members (forming, one hopes, a
generating set) are images of well-specified non-
mathematical entities, namely, observation proce-
dures that are defined operationally. % is either a
real algebra or a complex *-algebra. Mean values of
many observations (expectation values) are obtained
by letting an object prepared by a state-preparing
procedure interact with an observation apparatus.
The map from A to the set of expectation values ob-
tained by a state-preparing procedure (a state) is
assumed to be a linear, continuous, positive,11 and
normalized form on %A. It is assumed that states
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1. INTRODUCTION

It is distressing to see a field act where it isn't, as
in the Aharonov—Bohm effect.1.2 Such an experience
necessarily brings up the question: Is the Maxwell
field local ? And this question inevitably evokes the
counterquestion: What does locality mean?3.4 Be-
cause of the unsatisfactory state of quantum electro-
dynamics, and of the absence of a precise definition
of locality in classical field theory and in particle
quantum mechanics, the debate on these questions
has necessarily been characterized by a certain
vagueness both of the physical interpretation and of
the structure of the mathematical theory. But the key
- to the riddle may be in the more elementary theory
of the free Maxwell field—quantized or even clas-
sical—and these theories are simple enough to be dis-
cussed rigorously.

Is even the free Maxwell field local ? This question is
not frivolous. The constraint divB = 0 implies that
the magnetic flux through one hemisphere determines
the flux through the other, simultaneously in some
reference frame. This may be taken as a violation of
locality, because the state in some space~-time
region causes a constraint on the state in another
spacelike region. Clearly, a moreprecise definition
of the concepts is called for, and we have attemptedto
give a clear answer—at least for the classical free Max-
well field. This turns out to be anontrivial task. For-
tunately, a mathematically and interpretatively satis-
factory formulation of local independence for classi-
cal physics is now available.5 (Synonyms for local
independence are Einstein causality and maximum
signal velocity.) While the concomitant concepts of
the algebra of observables and its local subalgebras
have been defined and discussed for quantum field
theory,6-8 we had to do this long-overdue job for
classical field theory. Fortunately, the well-known
difficulty of integrating and differentiating in function
space has not been an obstacle for our purpose. While
the mathematical problem turns out to be simpler
than anticipated, we have not been able to give a con-
clusive answer to the physical question.

The main point of physical interpretation that distin-
guishes the present paper from the large literature
on the subject concerns the precise definition of
locality or, more felicitously, local independence.
While quantum field theory has always had—or has
claimed to have—a precise theoretical expression for

locality through the commutativity of local operators
at spacelike points, the concept of locality in particle
quantum theory and in classical field theory has re-
mained imprecise (“informal” in Bohm's languageZ2)
until recently.

Of course, special consequences of local independence
are known in classical field theory. In particular, for
linear partial differential equations the Green's func-
tion must vanish outside the light cone. This condi-
tion, however, is not sufficient; although the vector
potential A, has this property, it is reputed to be non-
local.

2. POSTULATES COMMON TO CLASSICAL AND
QUANTUM THEORIES

In order to study the consequences of the postulate of
local independence for classical and quantum theo-
ries, it is desirable first to state the postulate in an
operational manner without theoretical prejudices

and then to combine it with the theoretical postulates
of the two theories. For this purpose, classical

theory is formulated so that it shares the general con-
ceptual and mathematical framework that is custom-
ary for quantum theory.

Classical physics is then obtained as a special case
rather than as a limit of a sequence of quantum theo-
ries. This approach is suggested by two previous
developments. The first, by one of the present
authors, is a reformulation of quantum mechanics? in
which the algebra of observables appears as an alge-
bra of functions—commutative for the classical
theory and noncommutative for the quantum theory.
The other is Prosser's unified theory of nonrelativis-
tic particles.10

We assume a topological algebra U of observables,
some of whose members (forming, one hopes, a
generating set) are images of well-specified non-
mathematical entities, namely, observation proce-
dures that are defined operationally. % is either a
real algebra or a complex *-algebra. Mean values of
many observations (expectation values) are obtained
by letting an object prepared by a state-preparing
procedure interact with an observation apparatus.
The map from A to the set of expectation values ob-
tained by a state-preparing procedure (a state) is
assumed to be a linear, continuous, positive,11 and
normalized form on %A. It is assumed that states

J. Math, Phys., Vol. 13, No. 8, August 1972



1140

separate the algebra % so that the condition w(4) = 0
for all states w implies A = 0.

Some observation procedures are localized within a
space~time region R. This does not necessarily
mean that the physical apparatus is confined to R, but
that the procedure is so contrived that its result is
independent of events outside R. Images of these
local sets of procedures are, by assumption, local
algebras % (R). Common sense dictates the additivity
postulate

AR, UA Ry = AR, U Ry),

where § denotes the closure (in the topology defined
in Sec. 3) of the polynomial algebra generated by any
set § of elements: We say that § is the algebra topo-
logically generated by $§. In words, Eq. (2. 1) says
that the algebra topologically generated by the union
of two subalgebras associated to two regions is the
algebra associated to the union of the two regions. It
is also assumed that the union of all local algebras
A(R) generates topologically the total algebra,i.e.,

UAR) =, 2.2)

To avoid vagueness in the physical interpretation,
Egs. (2.1) and (2.2) must be understood not as stating
the existence of a certain algebraic structure of %,
but as statements concerning the map from non-
mathematical procedures into the algebra %.

(2.1)

Causality® (sometimes called primitive causality)
means that the present determines the future. Con-
sider a local algebra % (R ,), where R is a segment
of thickness T between two parallel spacelike hyper-
planes s. Causality requires that this algebra should
be equal to U, so that the expectation value “later” is
known if all expectation values “now” are known, The
statement is rather weak if it asserts merely the
existence of such segments with a finite 7. It seems
reasonable to strengthen it by requiring that

AR, =4, (2.3)

where R is any spacelike hyperplane.

In quantum field theory, causal independence of space-
like events (i.e., the existence of a finite signal veloci-
ty or of Einstein causality) is often considered to be
expressed by the commutativity of relatively space-
like local subalgebras. For the present construction,
this association is useless, because the algebras %
of observables are Abelian in classical physics. A
more general and directly operational formulation is
local independence.!2 Let any w,, w, be two states
and %, % ; two local algebras associated to regions
R,, R that are relatively spacelike. Then, there
exists a state w, such that

w19, = wa| A, and wylA, =wzlA . (2.4
That is, any two partial states on spacelike sub-
algebras have a common extension.

In this definition, “state” (short for “normal state”)
means a certain subset of the linear, continuous, posi-
tive, and normalized forms on the algebra %A of ob-
servables. It is necessary to make this restriction to
normal states also in quantum theory because some
states have little physical meaning.5 The precise
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definition of normal states for classical fields will be
given in Sec. 5.

3. ABELIAN ALGEBRAS OF OBSERVABLES FOR
CLASSICAL FIELDS

The irreducible representations of Abelian topological
algebras are isomorphic to the complex numbers.13
Therefore, classical physics differs from quantum
theory in that the irreducible representations, which
are of prime importance in quantum theory, are
trivial.

The algebra of observables for classical fields will
be constructed by analogy with the observables of an
n-particle system.10 The observation procedures
corresponding to the initial positions and momenta
{41, b1y ++++a,, b, } are operationally well defined.
They correspond to unbounded functions on phase
space. The piecewise continuous functions of these
basic functions may be chosen as the algebra of ob-
servables. Their physical interpretation by pro-
cedures is obvious.

The main feature of this construction is the existence
of a set of observables that are images of operational-
ly defined procedures at one instant ¢ such that:

(A) the set generates the algebra of observables, and
(B) the members of the set are algebraically inde-
pendent. We want field theory to share this feature to
the largest possible extent.

The phenomena that are the subjects of classical
field theories, such as acoustics and heat conduction,
have—or are idealized as having—certain common
features which determine the algebra of observables
and its physical interpretation, particularly its local
subalgebras. The instant observation of the pressure
or the temperature at a point is, of course, an ideali-
zation; but there is no reason to believe that it is not
adequate within the conceptual framework of classical
physics. Fields ¢,(x) at a point x and at an instant

t = 0 are exemplified by temperature, pressure, or
electric field components at points x of Euclidean 3-
space. Let Q be a topological space of real vector-
valued functions {y;(x)} on Euclidean 3-space R3. A
class G of functionals

Fi,x(W) = \U;(x)

will be considered as the images of the correspond-
ing procedures ¢,(x). Continuous functions of a finite
number # of such functionals F, , ,...,F;, have an
obvious operational interpretation, and they will be
considered as elements of the algebra % of observ-

ables. More general functionals of the ¢,(x), such as
J61101:)165[05(x)] -+ G, [0 2]
X f(Xq,Hgy 00y X,)dxy dxyc o dx

where fis an integrable function in R37 and the G,(3)
are bounded and continuous, have images

F) = [G W, (x )]G, [, x)] -+ G, [, (x,)]

X f(X1s Xy vy X,)dx1dXg *2dx, (3.2)

which are also elements of . More generally, we
assume that the set of continuous functionals F that
are images of procedures at the instant { = 0 is suf-
ficiently large so that its closure is the algebra C(Q)

(3.1)

n
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of all continuous functionals on . In this somewhat
restricted sense we conform to the commonly held
view that classical physics has a self-evident physical
interpretation.

For mathematical precision, we will make a number
of assumptions which are justified more by con-
venience than by physical necessity.

(1) Q is a topological vector space. The points ¢ € §
are real vector-valued functions on R3, piecewise
differentiable and bounded, equipped with the norm

lpll = sup, <Ei|\bi(x) |2>1/2.
X€ER

The space £ does not necessarily include all func-
tions of this class, and no closure is required.

(2) The algebra of observables is the algebra C(f2) of
all real continuous functionals F on © and is equipped
with the c-topology.14 In this topology, a subbasis is
constituted by the sets of functions

(A4,B) = {F € C(Q)|F(A) C B, (A C Q) is compact,
(B C R1)is open}. (3.3)

That is, if a function F € C(Q) restricted to a2 com-
pact subset A €  has values in the open subset B of
the real line, then all functions F’ “near” it are re-
quired to satisfy the same condition. This definition
seems strange at first; but since © is a metric space,
sequential convergence is precisely the classical uni-
form convergence of functions on any compact sub-
set.15

The class of functions ¥ € @ must be inferred from
the empirical properties of the observation and state-
preparing procedures that are the domain of the
particular field theory.

These properties restrict the algebra;but since the
algebra was generally defined in terms of functions
on the carrier space ,the empirical properties re-
strict Q. Again, since Q was generally defined as a
linear space of piecewise differentiable bounded
vector-valued functions, these properties restrict the
number of vector components and impose constraints
on the functions.

Since, by assumption, C(2) includes all continuous
functions, the elements of G defined by Eq. (3.1) are
algebraically independent. Hence, G Includes the
images of those point observation procedures that are
not subject to any constraints. In the case of heat con-
duction, the choice G = {F,} with

F.@) = 0() = ¥ ()

is indicated, because the time derivatives of the tem-
perature field 6(x, {) at ¢t = 0 are, by the equations of
motion, determined by the set {F,}. On the other hand,
no restriction on the initial temperature 8(x) is
known, so that 2 must include all piecewise differenti-
able scalar functions. For a pressure field p(x), this
choice would be inadequate. Observation procedures
measuring the time derivatives p(x, 0) are algebraical-
ly independent of the {p(x, 0)}, because there exists no
function F of elements p(x,, 0) and of p(x; 0) such that
w(F) = 0 for all states w. Indeed, by virtue of the
assumed separation of % by states, this means that no
such function F[p(x,),...,p(x,), b(x,), ..., p(xy)] =0
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exists, and hence the elements { p(x, 0)} are alge-
braically independent of { p(x, 0)}.

Hence, the proper choice for Q will be the space of all
piecewise differentiable two-component vector func-
tions Y, where y; corresponds to the pressure and y,
to its time derivative. That is,

p(x, 0) 4 Fl,x(ll/) = %(x),

. (3.4)
plx, 0) P Fy (M) = ¥ypx).
For the electromagnetic field, there are six vector
components of ¥,(x), namely E,(x) and B;(x). Here, how-
ever, algebraic independence of the set G forbids the
choice of «ll piecewise differentiable bounded func-
tions. In virtue of the assumed separation of % by
states, such a choice would imply the existence of a
state in which

6
k Z Finds,

i.e., the image of the observation procedure f s B,ds
(where S is a closed surface), has a nonvanishing ex-
pectation value. The functions ¥ must be subjected to
the constraints
6

]
2

3 9
2 _a;‘:'wi =0 ita 0%;.3

i=1

d/i:03

so that the predictions of the theory will exclude the
existence of a state such that the expectation value of
the magnetic or electric flux through a closed surface
is nonvanishing. The linearity of the constraint makes
it compatible with the linearity of the space .

It is not clear whether the set G generates topological-
ly the algebra C(Q), as in particle theory. No theo-
rems sufficiently powerful for a proof are known tous.

4., LOCAL SUBALGEBRAS ON SPACELIKE HYPER-
PLANES

Consider a region R of space-time consisting of »
simultaneous points R = {x 19 eeey xn}. The correspond-
ing local subalgebra % (R) contains the algebra generat-
ed by the images of the point observation procedures
¢;(x1), ..., 9,(x,), 1.e., by the functionals Fi,x]- W) =

¥,(x). Thus, %A(R) contains all continuous functions G
of the functionals F, , with x; € R. To generalize this
construction to a spaée-volume R = V, at the instant
t = 0, it is necessary to postulate rather than to de-
duce.

We wish to express mathematically the fact that the
observation procedures corresponding to %(V,) “see”
only the events in V, or that they are “blind” toward
things outside V,. Consider the set of functionals

A (Vo) = {FIFY) = F(x, ¥} (4.1)

where Xy, is the characteristic function of V. An

element F, € % (V) is constant on all functions y
that agree with a given function g in V. Clearly, the
set U . (V,) is a subalgebra of ¥ if all functionals F
in (4.1) are in ¥. This subalgebra does just what the
intuitive definition requires: It assigns values to
functions only on the basis of their behavior in Voo
Hence we postulate

A, (V) C A(Vy). (4.2)
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In general, % (V) does not contain the time deriva-
tives of the observables F, . at the instant ¢ = 0 and
cannot be considered as the local instant subalgebra
A(V,). However, in all realistic field theories—such
as the theories of heat conduction, acoustics, and a
Jfortiovi in relativistic theories—these time deriva-
tives are in fact functions of the observables F;, and

of their space derivatives at { = 0. This “action at
short distances” in field theories is not a necessary
feature of nonrelativistic theories; for instance, inte-
grodifferential equations are possible alternatives.
In the following, we shall restrict ourselves to theo-
ries in which Eq. (4. 2) can be replaced by the action-
at-a-short-distance formula

A (Vo) =AWV, (4.3)
We have to show consistency between the assumed
form of instant local algebras given by Eqs. (4.1) and
(4. 3) on the one hand and the additivity and complete-
ness properties expressed by Egs. (2.1) and (2.2) on
the other. The proof of Eq. (2.2) is trivial, since x
tends to the unit as V becomes large. The proof of
Eq. (2. 1) is somewhat technical and has been relegat-
ed to Appendix A.

To define local algebras in general space~time re-
gions R, we must consider the dynamics of the theory.
The dynamics of the physical system is associated to
a group T(#) of automorphisms of the algebra C(2)
which is in turn induced by homeomorphisms 7():

¥ (x) = Y(x, ) of Q through [T(HFIW) = Flr(¥].
Traditionally, this transformation results from the
solution of a partial differential equation with y(x) as
initial condition, but this is not the most general case.
The local instant algebra % (V, ) for the space-volume
V at the instant ¢ contains the functionals with the

property
[TOFIW) = Flx,r(tW].

A space-time region R can be obtained by the union
R = Uti v(t,)

of instant space volumes, and the algebra % (R) is de-
fined by the topological closure

AR) = Lt{%t[V(ti)]-

Since no use is made of these more general local
algebras, they will not be further discussed.

5. INSTANT LOCAL INDEPENDENCE WITHOUT
CONSTRAINTS

We will prove instant local independence in the ab-
sence of constraints, i.e., causal independence of
local subalgebras associated with nonintersecting
volumes of a spacelike hypersurface for situations
in which the carrier space Q contains all piecewise
differentiable bounded functions ¥/;(x), with 7 =
1,...,n.

Intuitively, normal states are those that can be pro-
duced by adding fields to the vacuum. We define an
accrual operator T, on the observables by

(T, W) = F(@ + V).

Loosely speaking, this operator increases the exist-

(5.1)
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ing field by the field ¢. Let S be the vacuum state
defined by

S o(F) = F(0), (5.2)

where 0 is an element of Q. Then, a class of states
defined by

S(F) =Y, NSo(T, F), X2 0, 2N =1 (5.3)

may be called normal because it is the class of states
produced by accrual from the vacuum. In the same
way, normal states which are only a “little” different
from the vacuum are implemented in Fock space by
density operators.

Consider the two normal states of a special class

S, F) = FW), S,(F)= F(o).

On the local subalgebras % (V) and % (V,), respective-
ly, the states are

s¢(F1) = Fl(!P) = Fl(X VI‘P) and Sw(Fz) = FZ(XVZ(p)’
(5.5)
where F, € A (V;). If there are no constraints, there

exists a third function 1 € Q such that for two dis-
joint volumes V,, V,, one has

(5.4)

nx) =y (), xcVy, (5.6a)
and
nx) = ox), x€V,. (5. 6b)
Then, if F, € %(V,) with i = 1,2,
S,p(F1) = Fl(ll/) = Fl(XVl‘p) = Fl(XVln)
= Fym) = $,(Fy) (5.7
and
S,(Fg) = Fale) = Fz(XV2 @) = Fz(szn)
= Fo(n) = S, (Fy).  (5.8)

Hence, the state S_ is a common extension of the two

states S ¢ and Sw'

Consider now two states S; over A (V),i = 1,2, de-
fined by convex linear combinations of states of the
class (5. 4), namely

51=E7\k5wk, 0<, <1, ?xk =1,
k

S,=26,S 0<6,<1, 25, =1.
m

m ’
Ym m

(5.9)

Again, if there are no constraints, there exists a set
of functions {7,,,} such that

_\Wx) xevy,
Tem® = 1050 x e v, (5.10)
and therefore the state
Sz = E mAe Sy, . (5.11)

is the common extension of S; and S,. Indeed, let
F, € A(V,). Then we have

S;(F) = ,?k & XSy, . (F1)

27 B, F1 (1)
myk

% 0. ? A F W) = S1(Fy),

(5.12)
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and similarly for F, € %(V,). Thus we have shown
the existence of a common extension for all normal
states and, therefore, instant local independence for
action-at-a-short-distance field theories without con-
straints.

It can be shown that all states of the type (5. 4) are
pure, but that not all pure states belong to this class.

6. CONSTRAINTS OF THE MAXWELL FIELD

Consider two contiguous space volumes V, and V,,
e.g., two open hemispheres separated by an equa-
torial plane. For the Maxwell field, the vector-
valued functions y, are the electric and magnetic
field intensities. A possible state S, of the type (5. 3)
is labeled by a constant magnetic field B parallel to
the z direction in a region including the hemisphere
V1, and another state S » 18 labeled by a constant mag-
netic field—B extending at least through v,. Since
only divergenceless vector fields are points in Q,
there is no common extension of the two states and,
therefore, no local independence.

This result is surprising if one believes that the
statement of local independence adopted here is the
precise expression of Einstein's principle of limited
signal velocity. (Note that for a scalar wave equation
without constraints, local independence is confirmed.)
We consider some possibilities for a solution of the
paradox.

I. Redefinition of the local algebras: Consider the
well-known representation of the free Maxwell field
by a Fourier integral of plane waves. The coefficients
a,(k) are linear combinations of four real functions of
k, not otherwise restricted. The Fourier transforms
a,(x) of these could be considered as the basic obser-
vation procedures of which the functionals (3. 1) are
images. The space 2 would then consist of all piece-
wise differentiable four-component functions. Clearly,
the algebra C(Q) of functionals on this new carrier
space is only another representation of the same
algebra. However, if now the local subalgebra %A (V)
is defined so that it contains images F, ,,(¥) = ¥,(x) of
the procedures a,(x) with x; € V, a different result
is obtained, viz.local independence. The choice be-~
tween these possibilities is not mathematical. The
operational definition of the fields E and B agrees
with the definition of local observation procedures,
while the quantities a,(v) are complicated integrals of
the fields and cannot be measured by instruments con-
fined to a small volume.

Similar objections rule out a redefinition of local
subalgebras in terms of the vector potential Au.

2. Incompleteness of the Maxwell theory: We
remember that a similar lack of local independence
was found for a theory of a finite number of relativis-
tic classical particles.5 It is easy to show that such
a theory cannot have the property of local independ-
ence; but it is easy to see how this defect is removed.
Since the statement of local independence involves
the existence of certain states, it suffices to remem-
ber that a theory with a finite number of particles is
artificially truncated because in reality there exist
states with more particles. In other words, the para-
dox is resolved here by pointing out that the general
principle cannot reasonably be expected to apply to
manifestly incomplete theories.
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A similar argument could be made for the constraint
divE = 0 of the Maxwell field. In a theory with
charges, this constraint is canceled; but the con-
straint divB = 0 could be lifted only if there were
magnetic monopoles. The possibility of magnetic
monopoles has been discussed extensively, and there
seems to be no theoretical reason to reject their
existence. The present argument is probably the
first to favor the postulation of magnetic charges for
the sake of “saving sanity.”

3. Rejection of the proposed statement of local in-
dependence: The difficulty is that there is no alterna-
tive proposal for a precise expression of finite sig-
nal velocity in classical physics. In quantum theory,
various forms of commutativity, “strict locality,” are
equivalent to finite signal velocity5; for classical
field theories no other formula has been proposed.
One could, however, consider aweak local independ-
ence by postulating that only local algebras associat-
ed to regions with finite but arbitrarily small space-
like separation are causally independent. Then no
states with discontinuous magnetic field intensities
are required to exist. However, we show in Appendix
B that the physical interpretation of this weakened
requirement is also incompatible with the properties
of the Maxwell field.

4. Change of topology: Some of our assumptions
are more technical than physical, and one might
wonder whether a subtle change in the assumed top-
ology might not eliminate the paradox. Without claim-
ing a decisive argument against this conjecture, we
feel that thinking about alternative reasonable topolo-
gies seems unfruitful.

5. Accept the inevitable: Finally, it is conceivable
that the nonlocal nature of the Maxwell field points to-
ward a genuine physical feature. Consider the follow-
ing possibility. The true local “elementary” field is
a spin-3 field, and photons are “composite particles”
in the sense that the spin-1 fields associated to a
region R generate the local algebra % (R); but the
electromagnetic fields (which we assume to be
generated by the spin-% fields) do not have this local
property. This possibility is in general agreement
with the ideas of Heisenberg,16 and it may be sup-
ported by recent results on relativistic wave equa-
tions in external fields. From these, it seems that
only a spin-% field can be described in a natural man-
ner without inconsistencies.17.18
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APPENDIX A

The algebra defined by Eq. (4.1) can be described as
follows. A set s of constancy? for % (V) is a set of
points  such that all functionals F € %(V,) are con-
stant on it,i.e., it is a set such that

[(‘Pp’abz) S s)] = [F(‘Iﬁ) = F(Wz)] for Fe QI(Vo)-
(A1)

By (4.1) and (4.3), a set s, of constancy for %(V,) is

the class of functions Y that agree with a given func-
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tion fin V,,. Then %A(V ) is the algebra of all con-
tinuous functionals with sets of constancy defined by
functions fin the region V. An algebra %(V; U V,)
associated to the region vV, U V, correspondingly
has sets of constancy defined by functions g in

vV, U V,. Two functions yy,y, € Q that agree in

V, U V, must agree a forfioriin V,. Hence, a set of
constancy of % (V,) is a union of sets of constancy of
A(Vy U V,). Hence

wWV) CA(V, U Vi),
and
AVHUA (Vz) CAWV, U Vz).

i=1,2, (A2a)

(A2b)

We show next that the polynomial algebra generated
by % (V) U A(V,) is dense in A (V, U V,). Consider
the many-one mapJ: ¢ b @ from  to the space
of the constancy sets for % (V; U V,), the function ¢
being the set of constancy to which ¢ belongs.

The topology of § is defined by the norm

lell = sup _ lo®)l, (A3)
xeViyVaveep

where ¢ is any function in the set g.

It is easy to show that J maps open sets in Q onto
open sets in Q. For,let S, be a sphere of radius € in
. ThenJ(S,) contains all sets in Q with norm less
than €. That is,

J(s,) =S,

where S, is the open sphere of radius € in . Fur-
thermore, compact sets in © are mapped on compact
sets in ; and if A, runs on all compact subsets of Q,
the sets {J(4,)} exhaust all compact subsets of Q.

We now define a map K from % (V; U V,) onto C(),
the set of all continuous functions F on &, by

KF = F’ F(‘;) = F(p), (A4)
and require that the topology of C(§) will be con-
structed by the subbasis K[(4, B)], in which the sets
(A, B) are the subbasis for the topology of C(Q) de-
fined in Eq. (3. 3). This inherited topology is nothing
but the c-topology, since

K[(4,B)] = {K(P)I[K(F)|(4) ¢ B} ={ FIF(A) c B},
(A5)

where A C Q is compact, B C R is open, and from the
previous discussion A C § is compact., From the
definition of K it follows that it is a continuous iso-
morphism. The gain in the last maneuver is the
demonstration that although % (V, U V,) is not the set
of all real continuous functions on some space,
K[u(V, U V,)]is.

Since % (V) and % (V,) are subalgebras of % (V; U V,),
the map F & Fof A(V,; U Vz) induces injective map-
pings A(V,) +— A(V)) of A(V;) into C(2). To show that
the algebra generated by the union % (V) U A(V,) is
dense in C() (in the c-topology), we use the Stone—
Weierstrass theorem.

Stone-Weierstrass Theorem?29: Let C(8, ¢) be the
sets of all continuous real functions on an arbitrary
space {2, equipped with the c-topology, and D C C(, ¢)
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a family that contains a nonzero constant function and
is separating. Then the algebra A(D) generated by D
is dense in C(, ¢).

To show that the union % (V) U % (V,) separates the
points €, consider two distinct points @, and @, in S,
and let ¢, and ¢, be elements of & that map into ¢,
and ¢,, respectively. Then there must be a point

X9 € V1 U V, such that ¢, (x,) # ¢,(x,). Consider
now the functional

F}‘o W) = lI/(x())-

It is an element of % because it is continuoﬁs, and if
%o € V;it is an element of % (V,) because

F, (xy,¥) = F, @

Hence, F (3’1) = F (¢,); and from the definition of the
map F + F, it follow that F, (¢,) = F, (@5)-
0

Hence, by the Stone-Weierstrass theorem, the topo-
logically closed algebra %, , = 9((V,) U %(V,) generat-
ed by the union A (V,) U A(V,) is equal to A(V, U V,).
Because of the continuity of the isomorphism of the
map % — U, the same statement applies to the alge-
bras A(V,) and A(V,). This proves Eq. (2. 1) and,
hence, the consistency of the definition of instant

local algebras in accordance with Eq.(4.1).

APPENDIX B

Contact between a theoretical principle and an ex-
periment is made by attempted refutations (falsifica-
tions) of the principle. If the principle states the
impossibility of accomplishing a result, then evidence
in its favor consists in the failure of sustained efforts
to accomplish the result, or, in finding it more and
more difficult to approach the desired end, As
pointed out in Ref. 12, p. 1330, evidence in favor of the
principle of energy conservation consists in the fail-
ure of many clever attempts to construct a machine
that delivers large quantities of work for a long time
without input, Similarly, evidence in favor of a claim-
ed causal independence consists in the failure of
attempts to prevent the existence of a partial state
here and now by creating a partial state there and
now-e.g., by shooting a bullet with infinite velocity.
Conversely, evidence against causal independence
consists in failure of attempts to create a partial
state here and now,whatever the partial state lhere
and now may be. For instance, a homogeneous strong
magnetic north-field kere is difficult to maintain in
presence of a strong magnetic south field in the im-
mediate surrounding. Failure to invent a magnetic
Faraday cage is evidence against causal independence
of two algebras associated to simultaneous and very
close space regions. Practically, gradients 9B,/dz of
a magnetic field component B, above roughly 1010
gauss/cm. cannot be created by state-preparing pro-
cedures. Hence, empirical evidence against the feasi-
bility of arbitrarily large gradients (the requirement
of weak locality) is as strong as evidence against the
feasibility of a discontinuity of the normal component
of the magnetic field (the requirement of local in-
dependence). In this'argument, use was made of em-
pirical facts rather than of Maxwell's theory. How-
ever, we maintain that, in testing a theory for com-
pliance with a causal independence principle, it is
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necessary to consider not only the states whose exist-
ence the theory asserts, but also the means for pre-
paring the state which should be part of a physical
theory. Even if no experiment had ever been made to
test Maxwell's theory, the above conclusion could be
derived from detailed calculations on the energies
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necessary to create extreme gradients of the mag-
netic field. The conclusion would be the same: The
difficulties in preparing states with very high
gradients become insurmountable as the value of the
gradient increases. Hence, even weak local independ-
ence is incompatible with the Maxwell theory.
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The origin-origin value of the Green's function for a simple cubic lattice with axial anisotropy is evaluated

exactly.

There has been much interest recently in the
evaluation of integrals of the Watson type

flkq, Ry ks)
— 3 _— 1

where f and g are trigonometric polynomials,and the
integral extends over some finite polyhedron P.
These are ubiquitous in lattice problems and are so
named in honor of Watsonl who evaluated ! in the
cases f=1:
(i) B.C.C. g,(k) = cosk; cosk, coskg,
(ii) F.C.C. g,(k) = cosk; cosk, + cosk, cosk,
+ cosk, cosk,,
g3(k) = cosk, + cosk, + coskg,

Z:l;

Z = 3;
(iii) S.C. z2 =3
where P is the parallelopiped — 7 < k; = 7. In this
paper we shall evaluate / for the case f=1, P as
above, and

g(k) = g,(k) + g,(k) + g5Kk).

This case is of practical interest in studying the
properties of a Heisenberg ferromagnet with axial
anisotropy and has been examined numerically by
Nakamura.2

Let us begin by assuming that z > 7, so the integrand
is nonsingular. Then the integral over kg, say, is
elementary and the k, integration can be reduced to
the complete elliptic integral of the first kind. Thus
we have, after making the substitution # = cosk,
1=22 1 qu(t — w2y vz K[u(s/G+ D)V2]. (@)
The complete elliptic integral K has the representa-
tions

2%n!

x —_ 11\ 2
K(k):% > (M) k2n = 3 7F, (3, 5;1;%2),
|Bl< 1 (3)

with the understanding that (— 1)!! = 1. By integrat-
ing term by term one finds

S x20-1(1 — x2)0-1 K(xz)dx
_1 L(A)T(0)

4 I‘(p + 0') 3F2(T12-,%;p;1,0' +p;22), (4)

which is valid for Rep > 0, Reo > 0, |arg(l — 22)|<m.
Now by using (4) with p =0 = 3, (2) becomes

I=[813/(z + 1)]3F,(3,3,%;1,1; [8/(z + 1)]). (5)
Clausen's theorem which states
3Fya,28,0 + B;2(a + B),a + B + 3;2)

={,F (a,B;0 + B+ % 2)}2
and Kummer's identity
oFi(@,B5a + B + 2;2)
= ,F,(2a,28;a + B+ 332 (1 — [1 — 2]V/2))

can be used to simplify (5), after which we have

I=[8n3/(z + 1)][,F,(3,z; 1;a2)]2, (6)
where a2 = 3[(z + 1)V/2 — (z — T)/2)/(z + 1)V/2,
Finally, noting that the hypergeometric function in (6)
is again the complete elliptic integral we find the
simple result

I=[1281/(z + 1)][K(a)]3. (7
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necessary to consider not only the states whose exist-
ence the theory asserts, but also the means for pre-
paring the state which should be part of a physical
theory. Even if no experiment had ever been made to
test Maxwell's theory, the above conclusion could be
derived from detailed calculations on the energies
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necessary to create extreme gradients of the mag-
netic field. The conclusion would be the same: The
difficulties in preparing states with very high
gradients become insurmountable as the value of the
gradient increases. Hence, even weak local independ-
ence is incompatible with the Maxwell theory.
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It is clear that the expression in (7) is an analytic
function of z except for a branch cut along —1<2z< 1.
Consequently, various identities, such as Landen's
transformation, can be used to continue I(z) analyti-
cally beyond the domain 2 < 7. It is interesting to
note the particular value

I(T) = T4(3) = 172.792 266 - - -

M. L. GLASSER

which complements Watson's results.

The function ¢ (x) tabulated by Nakamura? is related
to our results by

o) = % 1(3 — 1) = 16mx (K{[3(1 — V1 — »)]V/2})2,
moX X

which reproduces his tabulated results for 0 < x = 1,

1 G.N,Wwatson, Quart, J, Math. 10,266 (1939).

2 T,Nakamura, Phys.Rev.128, 2500 (1962).

Multigroup Neutron Transport*
A.Belleni-Morante

Istitulo di Meccanica Razionale, Universild di Bari, 70121—Bari, Ilaly

and

G. Busoni
Islitulo Malemalico, Universild di Firenze, 50134—Firenze, Ilaly
(Received 27 March 1972)

We investigate the nature of the approximations involved in the multigroup treatment of the time-dependent
neutron transport equation by using the method of approximating sequences of Banach spaces, We prove that
solutions of the multigroup system converge, in a suitable sense, to the corresponding solutions of the exact
transport equation. Moreover, we indicate the order of magnitude of the rate of convergence.

1. INTRODUCTION

The multigroup neutron transport equation is a power-
ful tool for investigating spectrum regeneration prob-
lems.! It is usually assumed that solutions of the
multigroup transport equations approximate the cor-
responding solutions of the exact transport equation,
in which the velocity (or energy) variable is not dis-
cretized. However, it is not clear how multigroup
solutions approximate exact solutions and, corres-
pondingly, evaluations of the errors involved in such

a procedure are never given.

In this paper, we show that the nature of the multi-
group treatment in the time-dependent case may be
investigated by using the theory of semigroups of lin-
ear operators (Ref. 2, Chap. 9; Ref. 3) in connection
with the method of the approximating sequences of
Banach spaces (Ref. 2 p. 512; Refs. 4, and 5).

Moreover, we prove that selutions of the multigroup
system converge, in a suitable sense, to the corres-
ponding solutions of the exact transport equation.
Finally, we indicate the order of magnitude of the rate
of convergence.

2, MATHEMATICAL PRELIMINARIES

Following Trotter,4 we say that a sequence of Banach
spaces { X } together with a sequence of linear opera-
tors {P, ,P € ®(X, X,) (Ref.2,p.149),is a sequence
of Banach spaces approximating a given Banachspace
X if

n=123,..., (1)

= [l 1

17,0l <1,

lim || B,fIl, for every f € X, (2)
7 =00

where |+, is a norm in X, and || - || is a norm in X.
As it will be clear in the sequel, P, f is a representa-
tion of f € X in the approximating space X,. Hence,
condition (2) roughly means that the norm of f is
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close to the norm of its representation provided # is
big enough.

We also note that, if | B, f||, - || /|| for every f of a
dense subset of X, then condition (2) is satisfied.

Let us now cons1der a sequence { fa} with f, € X,,,
n=1,2 ¢+, by definition, we say that { fa }converges
toch1f11m If, —P,fl = 0asn— . Corres-
pondingly, we cail f the limit of { fn} and write f =
lim f, as n— o,

Finally, assume that {B }1s a sequence of operators
with B, € ®(x,) and that B € ®(X). We say that { B, }
converges to B if lim,, B,P,f = Bf for every fe X,
ie.,if |B,P,f — PBfTOAOforeveryfeX.

By starting from the preceding definitions,the following
theorem can be proved on the approximation of a
given semigroup in X by means of a sequence of semi-
groups in X, (Ref. 4, Theorem 5.1, p. 900).

Theorem 1: Let T be a linear operator of class
G(M, B,) in X, and let T, be of class (M, B,) in X,,,
n=12+-+if

lim R\, T,)P, f = R(, T)f 3

for some X with Rex > 8, and for every f € X, where
RMNT,)=M—-T,)1 a.ndR(x T)= (M —T) 1 , then

'}Lrg exp(t T,)P, f = exp(t T)f (4)

uniformly in any finite interval of t > 0 (notations are
those of Ref. 2, Chap. 9). Hence, the convergence of
the sequence of semigroups generated by the T fol-
lows from the convergence of the resolvent operators
R(x, T,). Of course, this convergence must be under-
stood in the sense, of the definition given a few lines
above.

As we shall see in the following sections, due to
Theorem 1, a given initial-value problem may be ap-
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proximated by means of a suitable sequence of initial-
value problems.

We conclude this section with the following perturba-
tion theorem:

Theorem 2: Under the assumptions of Theorem 1,
if

LimB,P,f=Bf foreveryfec X, (5

where B, € B(X,) and B € G(X), then
Lim exp[«(T, + B,)]P, f = exp[t(T + B)]f,  (6)
provided that the B, are uniformly bounded,i.e.,

|B,I < N where N {s a constant mdependent of n.

In fact,let F = R(A, T)B, F, = R(», T, )B,,; since
€ g(M,B ) (Ref.2, p. 485) we have that I F,ll <
"ilB i (Rex— Bo)~ 1 Hence, || F, |l < 1 prov1ded that
Rex > By + MN and consequently,

IR, F )l < (1 — 1 F,I)"2

< (Rex —B,)/(Rex — By — MN).
On the other hand, we have
I P, R, F)f —R(1, F,)P,fl, <
x(P,F— F,P,)R(1, F)f”,,
= [(Rex — g,)/ (Rex
— By —MN)]Il (P, F— F,P,)2ll, - 0,

IR, F,)

where g = R(1, F) f and where we used (5).

Finally, by taking into account that R(A\, T + B) =
R(1, FR(\, T),R(\, T, + B,) = R(1, F,)R(\, T,), we ob-

tain
\R(\, T, +B,)P,f—P,RM\T +B)fl, < IRQ, F,)
X[R(\, T,)P, f— PR\ T)fll,
+ I [R(1, F,)P,
— P,R(1, F)IR(\, T)f],
< [(Rex — By)/ (Rex — B,
—MNIRMN TP, f — P, R, T,
+ IR(1, F,)
xP,¢—P,R(1, Fol,,
1

R(\, T)g= (l/vu)f_z exp[— (Vvp)(x — 3) ]2, u, v)dy,

=— (/o) [ exp[— (/o) — )80, u, 0)dy,

provided Rex > 0 and g € X. Moreover,R(\, T) is
such that

IR, T)l < 1/Rex, Rex > 0 (11)
(Ref. 9, p. 1554). It follows that T € G(1, 0), (Ref. 2,
p. 485).

Let us now consider the multigroup version of system
(7) + (8). First of all, the velocity range V =[v,,v,,] is
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where ¢ = R(A, T) f and Rex > B, + MN. We conclude
that

lim R(\, T, + B,)P,f =R(\, T +B)f
n =00

for any x such that Rex > B, + MN; hence, due to
theorem 1, (6) is proved.

3. THE MULTIGROUP TRANSPORT EQUATIONS

For the sake of simplicity, we shall consider the
transport equation and the corresponding multigroup
approximation in a homogeneous slab of thickness 2a
surrounded by vacuum. Only a slightly more involved
formalism is needed to study more complicated multi-
plying media.

As in Refs. 6 and 7, the Banach space X is the set of
all functions f = f(x, u, v) which are integrable over
the rectangle lx\fs a,lul<1,0<y, cv=sy, <+

v 1 a
o, with norm | f|| = fvri” dv [ dp [, 1fldx.

The abstract version in X of the initial-value problem
for neutron transport in the homogeneous slab reads
as follows:

du

Vi = Tu — Bu + JHu,

£>0, ueD(T)TX, (1)

Jim lu(t) —uyll = 0, uye D(T), (8)

where u = u(x, p, v, {) is the neutron density, du/dt is
a strong derivative (Ref.2, pp.7 and 132), %, is agiven
element of D(T), the domam of the operator T. More-~-

over, T,B,J,and H are linear operators in X defined
by the following relations:

1f=—uo L, Hf = [MH@,0)f (5 1,000,

Lt (9
=z f_ll f(x: [T T))d[.i 'y Bf= ‘UZ(‘U)f, )

where Z(v), is the total cross section and H(v, v') is a
kernel which takes into account scattering and fission.
¥inally, D(T) is the set of those elements f € X such

that (a) Tf € X, b) f(— a,u,v) = 0if p € (0, 1], and
(¢) fla,p,v] = 0if p € [—1,0). It is easily proved
that D(T) is dense in X,

As it is well known (Ref. 8, p. 113; Ref. 9, p. 1554), the
resolvent R(A, T) has the form

>0
(10)
u<o0

—

divided into # subintervals v, = [, ;,v,],7 = 1, 2,
n,with v, = v, and v, = v,,. Correspondmgly, the
Banach space X is composed of all vectors

@10, 1)
=9 u)={ ...
(x,u)

such that |l¢], = _lldu f_aal(pj(x, w ldx < o,
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The abstract version in X, of the initial-value prob-
lem for multigroup neutron transport reads as fol-
lows

dw(n)

g = Taw™ +J,Hu™, >0,

w e D(T,)C X, (12)

lim lw™ () —wf® |, =0, w® cD(T,), (13
where w(® = (.1} is the multigroup neutron density

W,
vector, w{" is a given element of the domain of T,»
which is dense in X,. Moreover,T,,B,,J,,and H,
are matrix-operators, defined by the following rela-

tions:
}, (14)

where ¢, . is the Kronecker symbol and where the con-
stants b “and K; ; are such that

J,={6,,}d

{bjai‘j},

]
T,=- {vj—léz‘j}a_x7

H,=1{K,;}, B,= Li=1,2,...,n

{inf[v2()], v € V;} < b; < {sup[vZ(v)], v € V;}
inf[f H(v,v)dv],v' € V.}s K
< {sup [,H(v, v")dv, v’ € v;}

(15)
< (v; —v;4) SupH(v, v"), S

v,
where fi'dv = fvifl‘dv and = (v) and [;H(v,v")dv are
assumed to be bounded pointwise continuous functions.

The resolvent operator R(x, T,) is such that the jth
component of the vector R(x, T,)¢ has the form

A

) (x — y)) ¢;(y, w)dy,

(@
u>0,

1 a
= exp (— x —
uvj_lfx xp( uvyl( y))

[RO\; T,,)(”]j =

X@i(y, u)dy, wu<0 (16)
provided that Rex > 0. Moreover, we have
IR, T, < 1/Rex, Rex> 0. (17

It follows that T, € §(1, 0) in X,.

4. CONVERGENCE OF {R(), T,)} TO R(\, T)

Let us now define the linear map P, from X to X, as
follows:

P.f=¢= <¢1>,

Clearly, we have | P, fll, < l fll. Hence, | P, |l <

and P, € ®(X, X,). s far as condition (2) is concern-
ed, if f (x, u,v) does not change its sign when x and p
are arbitrarily fixed and v runs over the interval [v,,
vy), we have that | P, fll, = Il fll,n=1,2,---.

On the other hand, let @ be the set of all polynomials
defined over the set {(x, u,v):lx| < a, lul < 1,9, <

(p]‘ = (Pj(xs IJ) = _f-;f(x’ H, v’)dvli

i=12,...,n. (18)
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v < v,,},and assume that p = p(x, 1, v) is a polynomial
of degree m. It follows that p changes its sign m
times at most as v runs over [v,, v,], given any x and
. Hence

0= Zé{f,-lpldv'— | [;pav'1}
=X { [;\plav — | [;pav'|} <

Wherep {maX‘P(x»M,U)l:lxl a, Iul m SV S
vy J, (R = {maxh],j_ 1,2,..., }hJ_v , and
where E is a sum extended over the m submt]ervals
over which p changes its sign (given x and p). Wecon-
clude that condition (2) is satisfied by any g € @, pro-
vided that lim _, h n) = 0.

We conclude that {Xn} together with the P, is a se-
quence of Banach spaces approximating X, since Q is
dense in X.

2mph(n),  n=m,

In order to make use of the results of Theorems 1
and 2 of Sec. 2, we are now going to prove that relation
(3) is valid if T and T, are given by (9) and (14).

Given any £ € X and assuming that A is any fixed
positive real number, we have from (10) and from (16)

[PnR ()\7 T)g]j
= (uv)'lf,-dvf_z exp(— a/v)g®, 1, v)dy,
[R(A, T,)P, 8);

X
= (“vj—l)_lf_a dy exp(— a/vj—]_)fj gy, 1, v)dy,
p >0,

p >0,

where o = A(x — 9)/u > 0. It follows
|[P,R(A\, T)§ —R(\, T P8l = 8

< (pov)” 1fdvf dy{exp <— —)ll —UL

31

xexp[— (%——)}I Ig(y,u,v)|} p>0,

i1
On the other hand, we have

11— (v/v;) exp{— a[(1/v,,)
< hy/v; .+ (v/v4)(1 — exp{— @

— (1/v)1}H
a[(1/v,4)— (1/v)]

since « is positive and v € V;. Hence, we obtain
X
A; < (hy/pv,y) fjdv ] exp(— a/v)lg(y, 1, v)ldy/v
X
+ (1/pv;) ), dvf_a [exp(— a/v)

V1&g, 1, v)|dy.

— exp(— /v,
Integration with respect to x leads now to the follow-
ing inequality:

f Ajdy < (2h(7Y/ v, )fdvf lgldy,

p>0.  (19)

Since a similar inequality can be obtained if u > 0,
from (19) it follows that

| PR, T)g —R(N, TP, 8ll, < 2™/ xv,)llgll.  (20)
We conclude that (3) is satisfied provided that

lim,,, h n) = 0.
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5. CONVERGENCE OF {B,} AND OF {J A}

First of all, we note that {J, H,} and { B,} are uni-
formly bounded. In fact, we have

n 1 +q
\H,ell, =25 J duf dx
i=1 a

1 (11 z
2 f_ 1 dIJ',_Z)l Ki,j ¢j(xy IJ")
i=
< Hylel,
and, in an analogous way
1B, oll, < byl el,,

where Hy, = (v, — v, ){sup[H(v,v");v € V,v’ € V}and
by = {sup[vZ(v)], v € V}. Hence

“Bn“ = bM, ”Jan” = HM’ n = 1!27..'0 (21)

On the other hand, given any £ € X, we have from (9)
and (14)

\[P,Bg — B,P,&l;| < [}lvzZ(v) — b,| |gldv
(n)
< k0 [ | g|dv,

where k(") = max, ., ({sup[vZ(@)],v € V]} —
{inf[vZ(v)], v € V]}])

It follows that

| P,Bg — B, Pgll, < k]|gl. (22)
As far as the sequence {J H,}is concerned, we have

+1 n
|[B,JHg — I, H,Pell < 3 a2 Joav' gt w00
-
+1 n
X IfjH(v,v’)dv—Kjil = %j:l duw' 25 fidv'
' i=1

x g, w, 01" [ [Hv,v") — B Jav],
where H; ; = K, ;/(v; — v;4). Hence, we obtain
|P,JHg — J H,P,z2l, < I™gl, (23)

where

l(n) = ma‘x1<i<nli{sup<i | f] [H(U, U') - Hj,i]dv> ’

j=
v' € Vlﬂ

From (22) and (23) it follows that {B,} and {J,H,}
converge to B and to JH, respectively, provided that
lim,_ #(") = 0 and lim, 1™ = 0.

n—>oco

6. CONCLUDING REMARKS
If we put

A=T-B+JH, A,=T,—B,—-J,H, (24
from (20), (22), (23) and by using Theorems 1 and 2 of
Sec. 2, we conclude that the sequence of semigroups

{ exp(t An)} converges to the semigroup exp(t A) gen-
erated by A, provided that

(a) limh(») = o,

() limk(®») = 0, (c) limI® = q,

asn—>w©, (25)

Let conditions (25) be then satisfied and assume that
the initial multigroup distribution w{* on the right-
hand side of (13) is such that
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w%") = Pn U, (26)

where u is the exact initial distribution [see (8)]. On
the other hand, the solutions of the initial-value prob-
lems (7) + (8) and (12) + (13) have the following form
(Ref. 2, p. 481):

u = exp(tAu,, w'" = exp(tA,)wi® = exp(tA,)P,u,.

Hence
lim [Py — w®|, = lim || P, exp(tA)u,

n=>o0 n—>o0

—exp(t4,)Pu l, =0, (27

and, consequently, the sequence {w (»)} converges to
the exact solution «, according to the definition of con-
vergence given in Sec. 2. In other words, the jth com-
ponent [P,u]; = jj udv of the representation in X, of
the exact solution is close to the jth component of the

n-group solution w(n), provided # is large enough.

Let us now discuss briefly the nature of conditions
(25). The meaning of (25a) is clear: the amplitude of
the largest subinterval must approach zero as n— ©,
As far as (25b) is concerned, we observe that, if
vZ(v) is a continuous function of v € V, then vZ(v) is
also uniformly continuous. Hence #(») - 0, provided
that 2(») - 0. Moreover, if vZ(v) satisfies a Lip-
schitz condition

lvZ@) —v'Z@) < Lilv—v'], v,0 €V, (28)

where L, is a positive constant, we have that k() <
Llh(n).

Finally, let us consider condition (25¢). If we assume
that H(v, v’) is continuous (and hence uniformly con-
tinuous) over the square V X V, it follows without dif-
ficulty that (@ — 0 if k@ —» 0. Moreover, if H(v,v’)
satisfies the following Lipschitz condition with res-
pect to the variable v’:

|H(v, v') —H(v,5)| <L ,|v' — 3], (29)

where L, is a gositive constant, we obtain that I <
Ly (vy — v, )b,

7. EVALUATION OF THE ERROR

We are now going to evaluate an upper bound of the
norm || P,u — w® | [see (27)]. With this aim in
mind, we first observe that, by using some results of
perturbation theory for linear operators (Ref. 2,
Theorem 2.1, p. 495), it is not difficult to prove that
A€ G(1,B,)inXand A, € §(1,8,) in X, where By =
Hy + by,. Moreover, the following inequality is valid
(see appendix):

where
X" = N — BO)—z[(zm(n)/vm) + B(n) + ™) (31)

and A is an arbitrarily fixed real number, such that
X > B,. On the other hand, a straightforward modifica-
tion of formula (2.27) of Kato (Ref. 2, p. 501) gives
R(x, A,)[P, exp(tA) — exp(tA,)P,JR(x, A) f
t
= /| exol(t — $)4,][B,R(\, 4) — R(\, 4,)P,]
x exp(sA) fds, (32)

J. Math. Phys., Vol. 13, No. 8, August 1972



1150

where f is any element of X and A > Bg- It follows
from (30) and from (32),
IR, A,)[P, exp(tA) — exp(tA,)F,]R(\, A,

< texp(Bot) XMl fll, for every fe X. (33)
Given now any g € D(4) = D(T), if we put f =
(M — A)g, then we obtain from (33):
IR, A,) [P, exp(tA) — exp(tA,)P, ]2,

< texp(BetX VIl (A — A)gll, geD@A), (34

where D(A) = D(T) is dense in X.
Furthermore, the following two inequalities can be
deduced from (30):
I exp(t4,)P,R(x, A) f— R(7, A,) exp(tA,)P, f|,
< exp(Bo x| £1l, (35)

| B, exp(tAR(, A) f — R(\, A,) P, exp(tA)f,
< exp(Bt)x ™ [ fIl, (36)

where f is any element of X,
By using (34)~(36), we get

I [exp(tA,)P, — B, exp(tA)|R(\, A)gll,,
< x expB )2l gl + tIl(A 1 — A)gl], g€ D(A).
(37

Finally, assume that u, € D(A2) (which is dense in X,
Ref. 2, p. 480) and put g§ = (\/ — A)u,. It then follows
from (37)

Il [exp(tA,)P, — P, exp(tA)lu,ll,
< X exp(B D20 — A)ugll + (AT — A)2uyl],

u, € D(A2), (38)

Inequality (38) gives us an upper bound of the error
(" — P ull, as a function of ¢, xX» and of the ini-
tial distribution u,. Moreover, the coefficient x(*
given by (31) is proportional to h("), provided that con-
dition (28) and (29) are satisfied. Finally, we observe
that the parameter A, appearing on the right-hand

side of (38), is an arbitrarily fixed frequency larger
than B,. It is then reasonable to assume that 1 is a

A. BELLENI-MORANTE AND G. BUSONI

frequency of some physical interest, i.e., to put for
instance X = 28,
APPENDIX

From (24) it is not difficult to obtain the following re-
lations:

R(\,A) = R(1,C)R(\, T),

R(\,A,) = R(1,C)R(, T,),
where

C =R\, T)[JH — B] € B(X),

C, = R\ T,)J,H, — B,] € B(X,)
and where

IR(1, Ol < ReX/(Rex — B8,),

IR(1,C,)I < Rer/(Rex — 8,).

Rex > B,

Moreover, we have
Ip,Cg—C,P,zll,
<|[P,R(\,T)-R(M, T,)P,JJH — B)gll,
+ |R(, T,)[P,H — B) — (J,H, — B,)P,]2l,.
Hence, by using (20), (22), and (23) we obtain
IB,C—cC,P,ll</x, 2>,
where (") = (28,/v,)h(®) + k(n) + 1@,
By a similar procedure we get
IP,R(1, C) — R(1, C,)P,l
=lR(1, O[B,C - C,B,]R(Q, O
S MA—By)2ym), x> B,
Hence, we finally have
| P,R(\, A) —R(x, A )P, |l
< | [P,R(L, C) — R(1,C)P, IR (A, T)|
+ IR, C)[P,R(\, T) — R(\, T,)P,] |

< (A — Bo)'z'}’(") + 2[vm(>\ - BO)]-lh(n)

provided that x» > 8.
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An analysis is given of all the possible quantizations of the linearized Einstein equations in terms of a weakly
local and/or covariant potential &,,(x). The discussion is done without making the apparently arbitrary choices
which characterize the standard formulations, and special attention is paid in proving those general features
which follow from basic principles and are therefore common to all local and/or covariant formulations. It is
shown that the requirement of locality and/or covariance alone implies that the Einstein equations cannot hold
as mean values on a dense set of states, and therefore unphysical states must be introduced in an essential
way. Moreover, the requirement that the Einstein equations hold as mean values on the physical states forces
the existence of states of negative norm in order to define hp,, as a local and/or covariant operator. Thus the
characteristic features of Gupta's formulation are shown to be shared by any local and/or covariant theory.
The arbitrary choices which oceur in the representation of the field operator hw" in the definition of the metric
operator and in the choice of the subsidiary condition which identifies the physical states, are shown to lead

to only a one-parameter family of theories. They can be classified according to the subsidiary condition

(ovh, + qo,h ) ¥ = 0,

each g # — § identifying a possible theory. This arbitrariness, which makes the literature on the subject rather
confusing, is resolved by proving that all the theories are (isometrically) equivalent. Such formulations are
discussed in the framework of axiomatic quantum field theory, with particular emphasis on their group theoret-
ical contents. Finally,an extensive treatment of Gupta's formulation is given along the lines discussed by

Wightman and Gérding for quantum electrodynamics.

1 INTRODUCTION

The aim of the present paper is to characterize the
possible quantizations of the linearized Einstein
equations in terms of a weakly local and covariant
potential 7, {x). An essential point of our analysis
will be to avoid any choice or restriction on the
theory, which might look arbitrary and therefore
questionable. Our aim will be to discuss only those
properties which follow from general principles and
are therefore shared by any formulation of the
theory. Of course,no commitment is made to parti-
cular gauge conditions so that the discussion is
gauge independent.

Special attention is paid in proving that very general
and physically motivated assumptions already give
rather strong restrictions on the theory and essen-
tially lead to the Gupta formulation. This shows that
the characteristic features of the Gupta formulation
are much more general than one might think.

In Secs. 2-6 we will discuss the restrictions imposed
by locality and/or covariance. It has been shown in

a previous paper! that if the potential is defined as

a weakly local and/or covariant operator, the lineari-
zed Einstein equations cannot hold not even in the
weak form

pr(f)‘llo =0, (1)
ermp ap RaﬂuP (f)‘I/O =0

(¥, being the vacuum state). In the present paper we
will first analyze how weakly the Einstein equations
must be required to hold in order that the difficulties
due to locality and covariance do no longer appear.
Furthermore we will investigate the conditions im-
posed on the metric by the requirements of locality
and covariance. Our analysis is performed in the
framework of axiomatic quantum field theory2. The
conclusion we will arrive at is the following: Local-
ity and covariance imply that the Einstein equations
can hold only as mean values on a set of states which
cannot be dense in the Hilbert space. Furthermore,
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the metric operator n cannot be positive definite or
semidefinite.

As a consequence, the presence of unphysical states
and the intrvoduction of an indefinite metric appear
unavoidable in a local and/or covariant theory. This
suggests that a local and covariant quantization of
the Einstein equations can be performed only along
the lines indicated by Gupta.3

In Sec. 6 and 7 the arbitrariness involved in (i) the
representation of the operator hpy, (ii) the choice of
the metric operator 7, and (iii) the choice of the
subsidiary condition, is discussed in detail. At first
sight one might think that there are as many possible
quantizations of the linearized Einstein equations as
the possible choices (i)—(iii). We will show that
actually the arbitrariness involved in (i)-(iii) can
lead to only one parameter family of theories, as a
consequence of general principles. The possible
theories may be classified in terms of the parameter
g which occurs in the subsidiary condition.

Finally, the relation between the possible theories
parametrized by ¢ is discussed. Since different
values of g lead to different propagators, the arbit-
rariness in the choice of ¢ has sometimes been a
source of discussion in the literature.4 As we will
show in Sec. 9, even if the different theories have
formally different properties, they are related to one
another by a generalized isometry. This will be
proved in a rigorous way by analyzing the Wightman
functions and without making use of gauge transfor-
mations, whose mathematical meaning is not very
clear.

In conclusion, without loss of generality as a conse-
quence of the previous results, a detailed discussion
is given of the formulation corresponding to the
Gupta subsidiary condition (g = — 3). The implica-
tions of the negative results of Ref. 1, in connection
with the Gupta formulation are also discussed.

2. BASIC DEFINITIONS

We start by defining the problem we are going to
discuss. Since we are interested in the Einstein

J. Math. Phys., Vol. 13, No. 8, August 1972
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equations, the basic fields are the fields Ru”pc(x),
which satisfy the following identities5:

R)\;.Wp = ~Rp)\up = Rp)xpu =R

[ZNTH) (2)
R)\upc + R>\pav +R)\cvp = 0.

We further assume that

(a) the fields R p0(x) are defined as operator-valued
(tempered) distributions in a Hilbert space H.6

(b) There exists a “unitary”” representation of the
Poincaré group {a, A} Ula, A) in the Hilbert space
H, and the fields Ruupo(x) transform as tensor fields
under U(a, A):

&) Ula, AY?
= NleAd BAL YA SR o (Ax + a)

Ula, A) R

(c) There exists a state ¥, (vacuum state) which is
invariant under Ua, A):

Ulg, )b, = ¥,

(d) The spectrum of the generators of Ulg, 1) is
contained in V:

vV, = {set of four vectors p such that p2 = 0, p0 > 0}.

The above conditions are rather mild assumptions
and are satisfied in the standard quantizations of the
Einstein equations, like the Gupta formulation or the
radiation gauge method.8

In order to simplify the discussion, we will work in
the weak field approximation, In this case R, Upo(x)
may be written in terms of lower order tensors hw(x)
= h,, (x) (the gravitational potentials) in the following
way>S:

RpuPo(x) = %(a o 60162 + 3“805565

Vi TR
—~3,8,0008 — 8,3,05 08 )yq (x). ®)
= Dpypcaﬁha@(x)

Then, the quantization of the fields R, ,(x) reduces

to the quantization of the fields & , (x).

Corresponding to assumptions (a) and (b) we now
make the following assumptions:

(a') The fields %, (x) are defined as operator valued
distributions in H, and ¥, is in the domain of (=
h,,(f*) for any test function fr¥.

(b”) The fields huy (x) have the following transfor-
mation properties under the space~time translation
group

Ula, D, (6)Ula, 172 =k, (x + a).
For a more detailed discussion of these assumptions,
see Ref. 1,

In the following by covariant and/or weakly local
theory we mean a theory in which we have

Ula, A, (x)Ula, AV = A51PA}C B (Ax + a)
and/or

(%, [h#,,(x), hpo(y)]\llo) =0 ifEx-—yr<o.
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We recall that the classical equations, whose quanti-
zation we are looking for, are the following ones:

R, =0,

w eofﬂYéaﬁl‘%p076 = 0.

They are the Einstein equations in the weak field
approximation in vacuum.3

3. WEAK LOCAL COMMUTATIVITY AND
UNPHYSICAL STATES

It has been previously shownl! that in a weakly local
theory satisfying the assumptions (a)-(d), (a’) and
(b"), one cannot have

R, ¥ =0, eanéaBRpm\po = 0.
Then, if the theory must have any contact with the
quantization of the Einstein equations, one is forced
to have them satisfied at least in the mean. The
weakest assumption one can make is to require that
the Einstein equations are satisfied at least when one
takes the mean values on the “physical” states. By
“physical” states we mean the set D, of vectors
which can be obtained from the vacuum state by
applying polynomials in the smeared fields R(f) =
R0 (f#¥P). Thus we assume that

(& Ry, (f1*) @) = 0, (4)

where &, ¥ € D.

It is important to stress that Eqgs. (4) are rather weak
equations: As shown by the following theorem, they
can be satisfied only in a proper subspace of H.

Theorem 1: In a weekly local theory with the
properties (a)-(d), (a’) and (b’), the set of “physical”
states D, on which Eq. (4) holds in the mean cannot
be dense in H

Proof: Let us assume that D, is dense in H. Then,
by putting & = ¥, in Eq. (4) and by defining

¢ = Rpu(f“V)IIJOa
one would get
(¥,8) =0,

where ¥ runs over a dense subset of H From this it
follows

(¥, 7,62 = 0,

i.e.,
(Lo, hpo‘Rpll\pO) = 0.

As proved in Ref. 1 this equation leads to a trivial
theory.

As a consequence of Theorem 1, one cannot hope to
realize a local quantum field theory of the Einstein
equations in a Hilbert space H in which the physical
states form a dense subset of H. The unphysical
states must be introduced in an essential way. If one

denotes by D the closure of D, one has that H— D,
cannot be empty.
Moreover, one cannot expect that the unphysical

states will play an irrelevant role. The presence of
unphysical states is essential in order that hp,, )
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be defined as a weakly local operator. As a matter
of fact, one cannot hope to define h“,,(x) as a weakly

local operator leaving l_)o invariant
Ry (f¥)D, © D,.

If this could be possible, one would get a Hilbert
space l_)o in which the Einstein equations would hold
in the mean on a dense subset of states. As discussed
in the previous theorem, this would lead to a trivial
theory.

It is worthwhile to remark that the same results are
obtained if, instead of weak local commutativity, one
adds the requirements of covariance to assumptions
{a)-(d), (a’), and (b’). Indeed, in a covariant nontrivial
theory one cannot have?

(T, 1 o R,p¥o) = 0.

Thus the conclusions of the above theorem apply
equally well.

Then, the introduction of unphysical states is a neces-
sary step if one wants to define %, , &) as a weakly
local and/ov covariant operator.

4. WEAK LOCAL COMMUTATIVITY AND
INDEFINITE METRIC

It has been shown that the Einstein equations can be
written in terms of a weakly local gravitational
potential h , (%), provided they are required to hold
only as mean values on the “physical” states, which
cannot be dense in H. One can strengthen the above
result by showing that the equation

(®,R,% =0, V& ¥ceD, (5)

can be satisfied only in a Hilbert space equipped with
indefinite metric. Thus W.L.C. not only requires the
introduction of unphysical states, but also the use of
an idefinite metric, as stated in the following theorem.

Theorem 2: A weakly local gravitational potential
satisfying the Einstein equations in the weak form (5)
can be defined as an operator valued distribution with
properties (a)-(d), (a’), and (b’) of Sec. 2 only in a
Hilbert space with indefinite metric. More precisely
Eq. (5) may be assumed to hold only if the product
(, )is defined as a sesquilinear form

(@, ¥) =1e, ¥,

where (, ) is the scalar product in H, and 7 is an
indefinite Hermitian operator.

Proof: Putting ¥ = ¥, € D, and & = R, ¥, € I,
in Eg. (5), we have

IR, %2 = 0. (6)
If the metric is positive definite, Eq. (6) yields

R,w‘l’o =0
and consequently

(‘I’Q; hpORW\I’O) = 0’

which allows us to conclude that the theory is trivial,
as discussed in the previous section.
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On the other hand, if n = 0, one may single out the
subspace H, C H con51st1ng of vectors with vanishing
norm

v eH, iff (¥,¥) =0.

By Lemma 4 of Ref. 1, the following property holds:

veH, iff(@¥)=0 V&cH.

Thus, Eq. (6) implies
R,¥, € H,

and, by putting & = k,,¥%, ¥ = R, ¥, in Eq. (5) one
has again

(¥o, hpon,\Ilo) = 0.
This implies that the theory is trivial.

In conclusion, a quantum field theory of the Einstein
equations can be formulated in terms of a weakly
local potential 2, (x) only if one is prepared to have
unphysical states and indefinite metric as essential
features of the Hilbert space in which the theory is
defined.

5. LORENTZ COVARIANCE AND INDEFINITE
METRIC

The results of the previous section can be easily
extended to the case of a covariant theory in which
the Einstein equations are required to hold in the
mean., We have the following.

Theorem 3: A covariant gravitational potential
satisfying the Einstein equations in the weak form (5)
can be defined as an operator valued distribution
with properties (a’), (b'), (¢), and (d) of Sec. 2 only in
a Hilbert space with indefinite metric.

Proof: By the same technique used in the proof of
Theorem 2, if = 0 one finds

(Yo, 7 poR Fo) = 0,

which, together with the assumption of covariance,
implies that the theory is trivial.

This result is not strictly connected with the request
of having a theory of the Einstein equations. Indeed,
if we add the hypothesis of weak local commutativity,
we find that any covariant theory of spin two mass-
less particles must be formulated in a Hilbert space
equipped with indefinite metric.

Theorem 4: A field h“,, (x) describing massless

spin-2 particles can be defined as a weakly local and
covariant operator valued distribution only in a
Hilbert space with indefinite metric.

Proof: Let us assume that the metric operator
may be semipositive ( = 0).

The two point function
%Upo = (\I’O’ h‘_;ll (x)hpo(y)‘llo) (7)

transforms according to a representation of the
Lorentz group
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WoppolNIx) = Ajpont BA’l YATL 5Waﬁyé(x).

Weak local commutativity implies that #upo(x) can be
regarded as the boundary value of a function Wy, 5(2)
which is analytic in the extended tube 7 and that Eq.
(7) can be analytically continued to complex A.10
Thus, W,,, ,(2) yields a representation of the complex
Lorentz group L, (C) and one may use the Araki-Hepp
theorem!! to prove that W ,__(x) can be written in the

following way?9: e

I'{{wpc (x) = (gppgl}o + gyogpo )Fl(x) +gpvgp0F2(x)
+8,9, 0 F5(x) +gpoa“a Fy(x) + apaoa,,Fs(x)
+(gpl/ 0+gl}0 a +gvpapa +g#oauap)F6(x),

where Fi(x), i =1,...,6,are Lorentz invariant dist-

ributions. Now, the invariant distributions are multi-
plied by independent tensors.12 Thus, the analyticity
of W upo(z) in 77 yields the analyt1c1ty in T’ of each
1nvar1ant function F;(x). This implies that each dis-
tribution F;(x) must satisfy weak local commutativity

Fx)=F(—x) ifx2<0.

Furthermore, since the field 4, (x) describes mass-
less particles, it must obey the equation

a h“,, =0,

which implies

Hence we havel3
Fx)=c + d~A+(x),

. 'ikxd_ak_
26 =35m 1 Tl

In view of the spectral condition, the integral is
taken over the cone

k2=0, ko= 0.

As a consequence, we can write

IR( g2 = af""(o)fpo(O) + bfﬁﬁ_k T ()fP0 )

relfe o)z +d [LE lfu (k)\z
=~ d3%
vf‘wfp P "k:
s F ds3k d3k
+ g [ ®)f, 0 kkg— + hfl R Fw 2 22,
kO 0
., h are suitable constants and

+eff, Wk fP°(k)—— + 1/,

where q, ..
&) = @ny2 [ flx)eiratx

is the Fourier transform of the test function. We may
choose a test function with the following properties:

f33
1

2
e w(k + K )’

200 -w(k2+k2) 211 222
fi1 =3e 0 s f1i =J1

w> 0,

whereas all the other components vanish:
=0, i=ij.
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Then we have
2( f1)¥ 112 = 12a + 67(b/w) + ng(1/w2) + 37 h(1/w3).

Hence, if 1 = 0, ¢ and % must be real and positive. On
the other hand, by choosing

201 £10 202 0 30
f2 _fz =f2 = :fz =

and the other components equal to zero, we obtain

- 2,12
ew(k"k), w>0

(2(f )l12 < — 6a — 37(b/w) — 3mg(1/w2) + §7Rh(1/w3),
which requires a < 0, if » = 0. Thus we must have
a=20
and consequently
b=g=0.
In conclusion we have
Warpo = & 8pofa T Wiipos

where W’ o
function

does not contribute to the two-point

(\po’RaByé R)\pup\l’o) = Docﬂ% nyrupomnaf'

The only contributing part is & w8 po F,; but the part
of h » proportional to Euw has no sp1n-2 and therefore

g puPhar‘I’o cannot be a state containing a physical

spin-2 particle.

Thus the request of a positive or semipositive metric
forces us to have a two-point function which cannot
describe physical gravitons. It follows that a covar-
iant and local description of a spin-2 massless field
by means of a potential 7, ,(®) can be made only by
using an indefinite metr1c

6. LOCAL AND COVARIANT QUANTIZATIONS OF
EINSTEIN EQUATIONS

According to the results of the previous sections any
local and covariant theory must involve unphysical
states and use an indefinite metric. These are the
peculiar features of Gupta formulation, and in fact

we will prove in this section that any local and covar-
iant quantization of Einstein equations reduces essen-
tially to Gupta formulation.

To this purpose we start by investigating the charac-
teristic properties of any local and covariant quanti-
zation of Einstein equations in terms of the potentials

hy, (%)

(0) From the previous sections, in order to have a
nontrivial theory, A,,(x) may be defined as a local
and covariant operator valued distribution only if the
Hilbert space H is equipped with an indefinite metric.
We denote by 7 the metric operator.

(1) From Sec. 3 one knows that not all the vectors of
H may describe physical states.14 The identification
of the vectors describing physical states may actu-
ally depend on the formulation of the theory,i.e., on
the subsidiary conditions one chooses. In any accept-
able theory, however, the vectors of the form

C(R 4ays (feBY8)y¥,, where @ is a polynomial in the
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smeared fields Raﬂyé (fo87%) and ¥, is the vacuum
state, may be given a physical meamng Thus, inde-
pendently of the quantization procedure, the vectors
belonging to D,

D, = {set of vectors of the form ¥ = CR (/)y}, (a)

are candidates to describe physical states. The sub-
sidiary condition must therefore be chosen in such a
way that it is satisfied by vectors belonging to D,,.

(2) According to Sec. 3 the Einstein equations can-
not hold as weak equations (Eq. 1). They should how-
ever hold as mean values on the vectors of D, i.e,

(‘I” Ryu tI)) =0,
where ¥ and ® are vectors of D,

In particular, by taking ¥ = R, ® one gets
(va@’ Rpuq’) =0. (B)

Therefore, in any local and covariant theory the
Einstein equations must yield vectors of zero norm
when applied to vectors of D,.

As we will see below the above conditions (@) and (8)
uniquely fix the possible formulation in a Fock space.

As a first step, we define the Hilbert space as a Fock
space

o]
H=)H,
n=0
where H, = C and H, is the set of the tensors of rank

2n defined on the direct product of the momentum
space cones and having the following properties:

LIS (8)
(pn'“iui'““j"]‘”'(...k‘i;”.kj"..)
:q’"'#j"j"'#i"i"'("'kj’ ok,
ask a3k,
. e 2
f kj k% ICI)“"”"“"‘rz"rxl < . )

The scalar product between two vectors
q,_:_(q)o’q,l’...)’ \I,E(q,o,q,l’...)

is defined as follows:

(9, ¥) = Z (@7, )
d3k
— i 27Tf .. n
n=0 k()‘
n 3 _
8 E uwzvz=o RO s

Since the vectors of H have finite norm,
¥ = (¥0,91,...)e H
if and only if
¥, =3 @n ey < .
n=0

A representation of the Poincaré group in the Hilbert
space is given in the following way:
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Ula, N@p ...y, (Ry, ..., k)

= git bja A“fl . 'Au:n <I>gl...qn(A"1k1, ., K1k))
The potential h#,,(x) is assumed to be an operator

valued tempered distribution on H,

As proved in the previous sections, the arbitrariness
in the quantization of Einstein equations may be only
in

(i) the representation of the operator h“,,,

(ii) the identification of the physical states by means
of a subsidiary condition,

(iii) the choice of the sesquilinear form

in terms of which one has to compute all the physi-
cally meaningful quantities like transition probabili-
ties, vacuum expectation values, etc.

As we will see, conditions (a) and (8) reduce this
arbitrariness to a one-parameter family of subsi-
diary conditions, and all the corresponding theories
are isometrically equivalent.

A. Representation of %,

The most general way of representing h“,, (x)as a
covariant and local operator is the following

BB =¥, h(f)= [h, &)fx)dtx,
\pﬁl,,,vn(kl, oo k)=ENT I+ 1 f%}i [a’f#"(k)
0
xoml, .., + of, T@nlu e By )]
+fz> lpu +Bguuf)\]
* ‘I>"‘ Hir Y-k e “Un(. ' 'kj-l’kjd' ) (10)

As a consequence of this definition and of the tensor

character of the &'s, h“,, {x) transforms covariantly

under the Poincaré group
U(a,A)h“,,(x)U(a, Ayl = NLeN 1ok (Ax + a).

Furthermore, by using Eq. 10 it is easy to check that
the following commutation rules hold:

[hpy (x)y h)\P(y)] = [a'B’(g'“)\gl}p + gyp gﬂ,)\)
+ z(a,B’ + OlB’ + 4aB)gpugkp]A(x _y)y (11)
Alx) = At(x) + A(x) = A+(x) — A+*(—x).
Thus h, (x) is both local and covariant.
B. Subsidiary Condition
Now we try to characterize the set of physical states
D, by means of a supplementary condition. We note
that if
¢ = Rasya (%f"‘ﬂy5 )‘I‘o,

then the component of ® in the one-particle space is
given by

81, = — BRNS,, — BELEMPT 0 s (12)
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and (bl},, satisfies the following condition:

k, dluv + gkvdlo =0, (13)
where g is the solution of the equation

B'q +4Bq +B =0. (14)

One may assume g’ # 0, since, otherwise, D, would
consist only of vectors describing scalar gravitons.
Besides that, this choice is necessary if one wants
consistency with the Einstein equations, as will be
discussed in Sec. 11.

Furthermore, one may fix the normalization of %, in
such a way that B’ = 1. Then Eq. (14) reduces to

qgt4pg+B=0. (15)
This equation has no solution for ¢ if 8 = — %, and,
conversely, there is no solution for 8 if ¢ = — 4. The
case ¢ = — 3(B8 = — 1) is equivalent to the case 8’ =0,

and will be discussed in Sec. 11.
In a similar way, one may easily verify that each ten-
sor &7+ in the representation

& = CR(NY, = (29, #1,--+)

obeys Eq. (13) for each pair of indices p;v;. Thus, we
have shown that all the physical states are contained
in the subspace H;

H ={®:8 = (20, &1,---), &"*! obeys Eq. (13)}

The subscript ¢ will sometimes be omitted in the
following.

In conclusion, we take the equation

kLI!QpU.“ + qkuéoc.“ — 0

as the subsidiary condition, identifying the subspace of
“physical” states.

C. Choice of the Metric Operator

On the “physical” states, the most general form of

a covariant metric operator not involving derivatives
is the following:

(11<I>),'j1 vy

Hntn

]
=Izl(xg”ipig"ioi—Ag“i"igpioi)d) P, (16)

where A, X are up to now indetermined parameters.

Obviously we have n = n*. As far as A’ is concerned,
we can exclude the case A’ = 0, since then, from the
equation

(R“v(fpy)\l"o, Rpu(fpy )\PO)_—— 0’ (17)
1
1 2 1 1 2
/___._+<—+1 ———<~—+1>
2 2¢2 2q 2 2q
2
_L££_61+g 1,./1 N\ _
= 2 29 \%4q 2 2q
a;;
_<i + 1> 1 4
2q 2q
0 0
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one would get
(1 + 4121k foo|2 = 0,

i.e., p = — g, which is in contradiction with Eq. (15).
Then, without loss of generality, we can put A’ = 1.

Using the definition of 7, it is easy to see that the
Hermiticity of the observable fields R a(fP”PU), fixes
the value of a’:

a' =g =1.

[Needless to say, Hermiticity as well as unitarity are
defined with respect to the metric operator 7,

(\I” R)\pup <I)) = (R)\ Wp ‘IJ, é)’

= n-1R* —
R)Tpup =N 1R)\pypn = R)\pup’

(RX"#UP\I’, %) =

R,’f“,,p being the adjoint of R, ,,, according to the
ordinary scalar product in H. ]

By using condition (B), one may show that there is a
constraint between A and gq. One has, in fact,

BN, = 8L, =k, f, + ENAR, S,
- (23 + l)g“uk PR ofpo’
and condition (17) yields

A= {4828 + 1) + 1]/[2(48 + 1)2]} = £(842 + 4¢ + 1).
(18)
The case 8 = — i(or ¢ = — 1) is excluded as before.

In conclusion we have

Statement 1: In any quantization of Einstein
equations in terms of a local and covariant operator
h ,(x) satisfying conditions (@) and (B), the choice of
the metric operator cannot be made independently of
the definition of h and the constraint is given by
Eg. (18).

Now we want to show an important property of 7
derived from the above equation.

Statement 2: If 7 is such that [[R ,¥[|2 = 0, then it
is semipositive in the subspace H' defined by Eq. (13).

Proof: For the sake of simplicity we restrict our~
selves to one-particle states. They obey the equation

k@ + qkv®,° =0,

which is convenient to explicitate in a frame of
reference in which k# = (&, 0, 0,%). In that frame

N(®)= &w8,, —2|®, |2, with A obeying Eq. (18), is a
quadratic form
N(@) Ea:] i~ j

where z,; = 00, z, = 33, 2z, = $11, 2z, = §12,
and

2 1y 0
442 2g
2 0
0 2
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The eigenvalues of a,; are the following: xy =0,
X5 = 0, and the roots of the equation

x2 —2(1 +k)x + 4k —2H= 0,
H=(1/2¢ +1)2, k=%—1/4g2 + (1/29 + 1)2.

The conditions for the semipositiveness of the roots
are

A< 1092 +4g +1, A< 3(8¢2 +4q + 1),

which are both satisfied, since IIRIM,‘;[JOII2 = 0 implies
Eq. (18). The conclusion is still valid also for ¢ = 0.
In that case one has A = 3 and

N(q))=2|q>12|2 + —é-ld)ll _4)12|2 > 0’

3
l®f2 = 2an(q>)%’i > 0.
0

We conclude this section by showing that there is a
connection between the parameter g(or A, or 8) and
the parameter & occuring in the definition (10) of
h,,. This is a consequence of condition (B).

Theovem 5: If “Ru,,‘l’o“ = 0, the Einstein equations
hold as mean values in D if

and, conversely, if Eq. (19) holds, the Einstein equa-
tions hold as mean values on H}.

Proof: By taking a vector ¢ € D of the following
form

& = (0, &1

pwoy.“)’

one has
(¥, B, (/#)8) = 0.
The above equation implies

dsk
f_k; [(1 + 20)kpkof, &1, } — & koS, &1
—kukp];”qw"] =0.

Therefore one must have
— (1 + 20) =gq.

To prove the second part,as 1 = 0 in H’' by statement
2, it is sufficient to show that R H' C H" = {set of
vectors of H' with vanishing norm}. It is easy to see
that both the negative and positive frequency part of
R,, maps H' into H'. Therefore it suffices to see that
1

§00 $01 $02
1/1
01 1/(1 14\ @00 — 433 0
& 5 <2q 1> ( )
@[JU = 1
$o02 0 i(?a
1(300 + $33) @01 02

and can be written as

PW = puFY + EVFr —[(1 + 2¢)/(1 + 4q)] gw*k,Fo.
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IR, ®[2 =0 =Ry, ¥, V¥eH.

The first of the above equations involving the negative

frequency part is easily verified by remembering the

definition of 7:

(, + B8y YW + Bgwi, @) —A(1 + 4p)1{, 012 = 0,
th = ki, foV + kVE, fou — givk ko, fro.

For the positive frequency part we note that
ﬂ“’\l/uu + afa W, P = kﬂwuykpfp” + k”q/uykpfpu
— kR, AP0, T — 2akyk, fre0. T
= — (1 + 20 + 2q)kyk, ¥, T= 0,
since ¥ € H’
Thus R, ¥ € H” and this implies

(®,R, %) =0, V& ¥cH.
7. PHYSICAL STATES AND EQUIVALENCE
CLASSES

In this section we will further inquire on the struc-
ture of H; and arrive at a consistent identification of
physical states. The first step is to identify those
vectors of H) which cannot describe physically
realizable states. This amounts to characterize
those states of H’, with zero norm. For the sake of
simplicity we wilf discuss the one-particle states.
The extension to many particle states is straight-
forward.

Statement 3: The one-particle vectors of H; with
vanishing norm have the form

&, =kE +hE —[(1+2¢)/(1 +4g)lg,k.Fo.  (20)

Proof: In a frame of reference in which 2 =
(k,0,0,k) we have, according to Egs. (13) and (18),

N(@) =¥, ~ 1|8, 9|2 = |[1/29) + 1](1/¥2)
X (®33 — §00) + V2 §11|2 + 2|Pl2{2,

The condition of vanishing norm is equivalent to the
following equations:

®12 =10, [(1/2¢) + 1](1/V2)(®33 — 00)
+v2 811 =g,
Then ¢, has the following form:
2(900 + $33)
$01
+ ]) @00 — $33) o2
$33
—
Here F¢ is a tensor with components:
1+ 6q 1+ 2q $01
0= 00 33 1=
Fo="mq *°~3rg ¥ =7
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02 1+ 2q 1+ 6g
2 = 3 =_ 00 33
F 7 F _§75q_¢ +_87e7_cI> !

R Fo = 1 4';4‘1(@00 — $33)

in the frame chosen above. The case ¢ = 0 is not
exceptional, since then $00 = %33,

In order to formulate a sensible theory of gravitation,
we must be able to associate a vector of positive
norm to a physical state, and to make the presence of
unphysical states irrelevant. In this way we can com-
pute the physically meaningful quantities, according
to the general laws of quantum mechanics.

We may not identify physical states with vectors of
H'-H", since this splitting is not Lorentz invariant.
A state having no component in H#” in a given frame
of reference may acquire an unphysical component
after a Lorentz transformation. Therefore one is led
to introduce equivalence classes: All the vectors
which differ only by their components in H” lie in the
same class. One may then associate the physical
states to the equivalence classes of the quotient space
H'/H". This definition is Lorentz invariant since H’
and H” are separately Lorentz invariant.

One may define the norm of a physical state (i.e., the
norm of an equivalence class of H'/H") as the norm
of a vector belonging to the given equivalence class.
This definition does not depend on the choice of the
vector in the equivalence class. In this way the norm
of a physical state is clearly positive definite. More-
over, in H'/H" the Einstein equations are satisfied as
a consequence of Theorem 5.

8. SPIN CONTENT OF THE THEORY

The physical interpretation of the theory given so far
may be further justified by a group theoretical
approach. One may show, in fact, that the equivalence
classes discussed in the previous section yield a
representation of the Poincaré group corresponding
to massless particles of spin 2.

The analysis of the problem from a group theoretical
point of view will moreover strengthen the results of
the previous sections by showing that an acceptable
representation of the Poincaré group can be obtained
only in the quotient space H'/H",

The representations of the Poincaré group corres-
ponding to massless particles are usually characteri-
zed by the condition13:

W2 = Wu W, =0,
where W, is the helicity operator defined by

1
We=3 (HVPOMUPE)

Now, in the space of symmetric tensors <I>”,, (x), the
representation of the generators of the Poincaré
group is the following:

(qu’)po = iapépq(x),
i(M,_,,uq))po = (x“ 0, —x, a“) <IJpu + gppévo
— 85 %o T 8uoPup — BuoByp-

Therefore, in momentum space, in the case of vanish-
ing mass, the operators W, and W2 act in the tollow-
ing way:
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(Wha)Po(k) = — i(en By, + €8 FV,8;) (21)

(W28)po = 2kphy @50 + 2ok B — grokokBd
—kPko®_ T, (22)
The condition W2 = ( becomes

2kPRy® B0 + 2kok o — geok kB o —kPRO® T= 0. (23)
By multiplying the above equation by kp one has

ko kg P =0,
and therefore Eq. (23) implies

ky®fo — 3R9® T = 0,

In conclusion, the subspace of H on which W2 = 0
coincides with the set of vectors satisfying the
Hilbert Lorentz condition with ¢ = — 1. As it has
been remarked (see also Sec. 6) these vectors cannot
correspond to physical states and therefore one
cannot identify H_, , with the subspace H’ of
“physical” states. This difficulty has no counterpart
in quantum electrodynamics where the condition

W2 = Q does identify the subspace H’ of “physical”
states.

Statement 4: In the Hilbert space H of symmetric
tensors defined in Sec. 6 the condition W2 = 0, can
be required only in the weak sense:

W2H' C H". (24)

quuation (24) is indeed satisfied for %, € Hy(g =
—3)

Equation (24) guarantees that the representation of
the Poincaré group in H'/H" corresponds to mass-
less particles. In order to complete the group
theoretical analysis, one must discuss the eigen-
values of the helicity operator in H'/H"  i.e., the
spin content of the theory.

The eigenvalue equation is the following:

€pn KT BE + €05 RTE = iNK, &

uoBy B Tpo + kPTHU
+ kT, — [(L+ 29)/(1 + 49)) 8,0k "T,r.  (25)

The second term on the right-hand side is a vector
of H"{(g), whose general form has been already dis-
cussed in Sec. 7. The eigenvalue equation must in
fact be solved in H'/H" i.e., up to vectors of H”. A
detailed analysis of Eq. (25) gives the following.

Theorem 6: The eigenvalue of the helicity
operator in H'/H" are only 2 and — 2.

Proof: The proof consists in showing that any
tensor satisfying Eq. (25) with A2 # 4 belongs to H”,
i.e., the only eigenvector in H'/H" corresponding to
A2 # 4 is the null vector.

Contracting Eq. (25) with g¢° gives

~ 1,
kPT“P = 2z)\k“(l + 4q)<I>pP.
Substituting this result back in Eq. (25) and summing
over the permutations y 2 p =0 — y and

0 p—u 0 yields
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kAT, +T,, + A&, — 31 + 2¢) g,,8,7}
+k {T + T, + X[, — 31 + 29) £,,%, "]}
+k“{1;,p + 1T, +ir[8,, — 3(1 + 29) g,,,"]} = 0.
This implies
T, + T, +iX&,, — 31+ 2q) 8,,%r I=0. (26)

It is convenient to distinguish the following cases:
(i) Case x = 0: By using the antisymmetry of T,
one obtains

N(®) = &,,3* — 3(8¢2 + 4¢ + 1)|3,x[2 = 0.

Therefore &,, € H
(ii) Casea = O:

One may define a new tensor
¥, =8, —z(1 +29)g,,8" (27)
which satisfies the following equation

ke, — zk,&" =0,

Equation (25) can then be written in the form

EYU8 + € kw =ixk¥, + kT, +RT,. (28)

€upBY noBy ppo a’pp

[Note that W#(gpoA) = 0].

Splitting T, in its antisymmetric and symmetric part
[this last 1s determined by Eq. (26)], one has

2kP (T, — T, ) = kPA,, = §ikk ¥,

After some calculations one finds
KpApo

and
A(EAZ — 1), B = Q.

=0=1,T

If » = 0, A2 # 4, then one can conclude
Ty UBT = &, 5= N(®) =

Therefore ¢, € H; and the theorem is proved. For
the details see Appendix A.

9. EQUIVALENCE OF ANY LOCAL AND
COVARIANT QUANTIZATION OF EINSTEIN
EQUATIONS TO GUPTA FORMULATION

In Sec. 6 we proved that all the possible quantizations
of the Einstein equations by means of a local and co-
variant operator % ,(x) can be classified according to
the parameter g entering in the subsidiary condition
ke, ... + gk, ®t,... = 0.

Thus the arbitrariness in the definition of Ry, &) in
the choice of the metric operator 7 and in the sub-
sidiary condition reduces to a one-parameter family

of possible subsidiary conditions characterizing the
“physical” states.

From a Hilbert space point of view the theories
corresponding to different values of ¢ are substan-
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tially different. For example the manifold of
“physical states” as well as the definition of the
fields R, ,, are different for different choices of g.

This arbitrariness has been a source of discussion?
in the literature mainly because different values of ¢
lead to different propagators.

In this section we will eliminate this arbitrariness by
showing that all the theories with ¢ # — § are equiva-~
lent, in a sense which will be made precise in the
following. Before proving this statement we need a
definition and a lemma.

Definition 1: Let 7, and 7, be two Hermitian ses-
quilinear forms defined in the Hilbert spaces H; and
H,. An operator V:H, = H, is called isometric with
respect to the metric operators 1, and 7, if

(1) The domain of V is the whole Hilbert space H,,
and the range of V is the whole Hilbert space H,

Dy =Hy, Ay =Hy;
@) (Ve, Vo), = (n,Ve, V¥)
= (&, ¥), =& ).

If n, =n, =1 and H, = H,, the above definition coin~
cides with the definition of unitarity of V with respect
to the metric 7.

Lemma 1: Let ¢{x) and Y(x) be two Wightman
fields defined in the Hilbert spaces H, and H,, with
cyclic vectors ¥, and ¥,,, and let the corresponding
Wightman functions be defined in terms of the metric
operators 7, and 7),, respectively:

Wi =¥y, d0q) - dlx, Wyy),
= (112\1102, W(xl) . IP(xn)%z)'

If all the Wightman functions coincide
Wi =Wz Vn (29)

then there exists an operator V :H, = H, which is
isometric in the sense of Def. 1.

Proof: One may define the following mapping V:

=0y, ey )%= ¥ = O, ..., ¥,) ¥

Since the vacuum states ¥,; and ¥,, are cyclic
vectors, the operator V so defined has domain and
range in the whole spaces H, and H,. Moreover, it
is easy to see that V acts linearly, and therefore
defines a linear operator: H, = H,. Finally, V is
isometric according to Def. 1, as a consequence of
Eq. (29).

Theovem 7: The Wightman theories of the
Einstein equations defined for different values of
g(g = — 1) are all equivalent, i.e., there exists an
operator V relating the different theories, which is
isometric according to Def. 1.

Proof: Leth ,,(x) be an operator valued distribu-
tion in H and let

CRT ) = H,
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[¢ depends on the definition of 2(f) via Eq. (18)].
Clearly H; is a subspace of # and, therefore, is a
Hilbert space.

One can compute the two point function
(s 72, (W (8P, )
Py ~ - d3k
= 21 [ 7w ()8, (k) — 37,0 ()8, )) = .
v

The right-hand side is independent of g and therefore
the two-point function is the same whatever the sub-
sidiary condition one chooses. Since we are working
on a free field theory this result guarantees that all
the Wightman functions are independent of g.

Therefore, given two theories defined by the values
g and g’, all the Wightman functions coincide, 16 and,
by Lemma 1 there exists an isometric operator V
relating the two theories.

It may be interesting to show explicitly how the var-
ious theories are related by the isometric operator
V. In particular it is worthwhile to see how a theory
defined by ¢ * — 7 is related to the theory corres-
ponding to ¢ = — 3 (Gupta formulation, see Sec. 10).

If h,(x) is the potential in the g theory, one may
define a local and covariant field %;,(x) in the follow-
ing way:
ki, () = B3 + B,
hip = hy, — Q@+ 29)/[201 + 49} g, 05,

ki = b, — 31+ 2) g, 50
It is immediate to verify that %), actually coincides

zzith h,, (¢ = — %), and the Hilbert space H.; , is given
y

H’-l/z = (P(th (f )‘I’o)'
In conclusion all the theories with ¢ = — 3 are iso-
metrically equivalent to the theory defined by ¢ =
— % corresponding to the choice made by Gupta.
10. GUPTA FORMULATION

Since all the theories with ¢ # — i are isometrically
equivalent, it may be worthwhile to discuss the case

q = — % in some detail, in connection with Gupta
formulation.

For the case ¢ = — 3 the definition of &, (x) is the
following

By ()8 = (20, @1, -+ +),

—— d3k - "
&7 ..., =2V ¥ 1 fk—of“"(k ol e, Bk, . R,)

b1 s (7 1 Z
+\/7]Z:;1 (o R) — 2g,,]ujfx ]

—

X‘I‘ﬁ;?-@---p"u,‘(kl""&"' ). (30)
p g

According to the discussion of Sec. 9 the symmetric
tensor %, (x) cannot describe only physical (spin-2)
particles. In the classical theory the lower (0, 1) spin
part of b, is eliminated by the subsidiary condition5

ok, —28,m> = 0. (31)
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In the quantized theory this equation cannot be re-
quired to hold. In fact, if Eq. (31) is added to

Dh”y =0,
we obtain the following operator equation

R, =0.
As shown in Ref. 1 this is inconsistent with the prop-
erties of locality and/or covariance. Then one may
require that Eq. (31) hold only as mean value on the
“physical” states: a way to realize that is to require
that Eq. 31) hold for the positive frequency part.
More precisely, if H’ denotes the set of “physical”
states, one has

(@ — 23h\ N =0, V¥ eH.
This equation may be regarded as the condition which
characterizes the “physical” states. It is not difficult
to see that H’, so defined, is the set of vectors & =
(#0, &1, - -+ ) for which

knd>.71+yl__, — 2k, &4 B =0,

Thus H’ coincides with the space H.; , discussed in
Sec. 6, as one could have anticipated, since h“,, x)
defined by Eq. (30) corresponds to the case ¢ = — 3
of Sec. 6. Accordingly, the only possible choice for
the metric n is the following one:

(®, ¥) =25 (n@n, ¥)
nay..., = I (ghiPighici— 5 guvigesci)an.
i=

(see the discussion in Sec.6). The above definition of
7 coincides with that given by Gupta.

As a last check, we can verify that the commutation
rules and propagator are the same as the Gupta
formulation if evaluated in terms of Byt

[hpu(x); h)\p(J’)] = i(gpugl}p +g,1pgl/}\ —gp,ug)\p) A(x ‘—y)

In conclusion, there is no arbitrariness in Gupta for-
mulation except for the choice of g. All the other
parameters of the theory, like the definition of huy or
the choice of the metric operator, are uniquely

fixed once g is fixed.

Before closing on Gupta formulation, it is worthwhile
to see how this local and covariant theory escapes
the difficulties discussed in Ref. 1. The representa-
tion of the two-point function derived in Refs. 1 and 8
for any local and covariant theory is indeed satisfied
by Gupta formulation:

(T, 7 (%) Ry s (9)¥0) = 3(8,0800 + Lo &up
_g”ygpo)[ayaﬂagﬁg + auaaagag — aaayagag
— 95056585]A(x — ).
Then one has
(‘I’O,h#u(x)Rﬂ'y(y)‘IIO)

= — 3(050,8,y + 39,8,y + 3,2, 8,
+ aya“ng)A" = 0,
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The essential point is that in Gupta formulation the

Einstein equations do not hold as weak equations
(\II,RW\IIO) =0, Vv¥eH

(see Sec. 5 of Ref. 1), and therefore one cannot get the

conclusions of Refs. 1 and 9. As a matter of fact the

Einstein equations do not hold when applied to vec-

tors of H',but only as mean values on H’. This may

be verified explicitly. Indeed,hw(f“”)\ll0 € H’ only

if aﬂfﬂ" = 0. In this case one has

(‘I’oyh(f)pr(y)‘I’o) =0
in agreement with Theorem 5 of Sec. 6.

11. CASEq =—3

In this section we will see why the case ¢ = — §, cor-
responding to 8’ = 0, must be excluded. The main
reason is that it does not satisfy conditions (@) and
(8). In fact, if we want to identify the “physical”
states with the vectors belonging to H., 4, one must
define the negative frequency part of huu(x) in such

a way that

(Rogys (FEBY8)Wp),, = — 388, kak, /™0,

Only if this condition is satisfied, the one-particle
vectors of D, belong to H_, ,,, i.e., correspond to
“physical” one-particle states. In this case however
one cannot have condition (8) satisfied. As a matter
of fact, condition (B) is equivalent to require that the
one-particle vectors of the form

(R po¥o)yy = — 288,k ko f P

have zero norm. This is possible only if the metric
operator 7 is so chosen that all the one-particle vec-
tors of the form

b =&Y
have zero norm, and this in turn gives
||Ra575(f°‘675)||2 =0 Vf.

Therefore all the on-particle vectors of D, would
have zero norm, a result which is clearly not accept-
able. In particular the above result shows that one
cannot define a scalar theory of the Einstein equa-
tions by naively putting

hpv (x) :gpv(p(x)'

There is also another way of seeing that such a
scalar theory of gravitation cannot be based on the
Einstein equations. In fact, in such a theory one
should have

Ry, = ([Og, +20,3,)0(x). (32)

If we impose that the Einstein equations hold as mean
values on D, we obtain

The Wightman function

W(x,y) = (¥, 0(x)0(y)¥,)
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is obviously translation and Lorentz invariant:
W(x,y) = W(x —y) + W(A(x — ).
Then Eq. (33) reads
(Dg,w + za“ay)([jgpo + 2apac)W =0. (34)
Contracting with &po WE obtain
(Dg“y + zapay)m W=0.
The Lorentz invariant solutions of this equation arel?
O W = const.
Then Egq. (34) implies
a p 9,8,0,W=0
and, consequently,
W{x) = ax2 + b.
This leads to
@0, R ggysByupe¥o) = 0-

Therefore the resulting theory is trivial, and one can-
not hope to get a scalar theory of the Einstein equa-
tions.
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APPENDIX A

In this appendix we will give the details of the proof
of Theorem 6. The equation to be discussed is the
following:
€ppeyk7¢ﬁo+ emﬂykwﬁp =iMNe, b + BT + kT,
—[(1 +29)/(1 + 49)]g,, k7T, (A1)

where T po Was found to obey the equations
o Too + To =AM, — 5(1 + 20) 2,007 ] (A2)

kPT,, =irk,3(1 + 4g)¢* . (A3)
1. x=0

Since T, is antisymmetric, one can define a tensor
T such that

T#y = €pll)\T T M
Then Eq. (Al) becomes

€8y | R1P  — R TV + €, |RYGB — R, TY| = 0.
By contracting with €#¥ one gets

3(RTgre — kAP — 6P TAT + (1 + q)(RAg™P
—kgre)pr + 2870k, TV — 270k TTr = 0,  (A4)
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and by further multiplying by 2, one obtains
K \TM = 3(1 + 4q)k e .,

Finally, substituting this result in Eq. (A4) and con-
tracting with ¢ e one has

Ordr, —2(892 + 4q + 1) |$F |2 =N(¢) =0

as anticipated in Sec. 8.

2. A =0
In terms of the tensor
lll/po = ¢po - %(1 + ZLI)gpoqu,

Eq. (A1) becomes

eupﬂykywsﬂ T RTVE,
=Nk, TR T,, T R,T,,. (A5)

Contracting Eq. (A5) with &, one gets
kPT}10 = 0.

If Ttpo is split into its symmetric and antisymmetric
par

T = %(Tpo + Top) + 3(T )0 — Typ) = — 2iM,, + 4,
. . s (A6)
the antisymmetric part A oo satisfies
keA = FINR YT . (AT

Substituting Eq. (A6) in Eq. (A5) and contracting with
€HPrT yields

— 3(kTYro — RNYOT) — Llgotkr __g)\ck'rlwpu
= i)\eupkfkuwpo — %ixepp)\TkP\I,uc
* GPP)‘T(kpA“O + kOAup)' (A8)
By exchanging ¢ and 7 and summing one has
3(3A2 — 1)(kTYro + ROYAT — 2k Moy 0T)
= L(2g07kN — ghokT — gATROYYH

+ (R A0+ koA, + cH(k AT + kTA“‘Ekg)

where Eq. (A7) has been taken into account.
Contracting with €,,,,%% one gets
3ko[bT ghoA , — 8T Ay,
t2RTAg, R AT —kgA,T] =0

from which

koA, = 0.
This implies

v, =0.
Then by contracting Eq. (A9) with €, , one obtains

— 3(A2 — 1)e, 0 kMW,

=2k Ay, +h Ay —kA . (AL0)
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Subtrz?.cting Eq. (A9) from that obtained with the per-
mutation @ = 7 - 8-> a we have, taking into account
Eqgs. (A5) and (A6),

k TA Ba kBAOLT
= (A2 — V(b g, — 3iAE gler
- ‘%ihkrwaﬂ + kBAO(T + kTAaB)'
Finally, by contraction with ¥87 one has
)\(%)\2 - l)djﬂr —‘J/—BT =0,
and the conclusion of Theorem 6 follows.

APPENDIX B

In this Appendix we will discuss the role played by
Lorentz transformations in the theory. For the sake
of definiteness, we will refer to the case ¢ = —

[

As a matter of fact, the role of Lorentz transforma-
tions is a bit different than in quantum electro-
dynamics.

There, by a Lorentz transformation, one can always
eliminate the unphysical (i.e., belonging to H"”) part
from a vector of H'. The analog for gravitation
would be as follows.

In a frame of reference in which K# = (K0 0 K),a
vector of H' can be written in this way:

00 ¢p01 02 %((poo + ¢33)
¢01 (;bll ¢12 ¢01
o = ¢02 ¢12 _¢11 ¢02
3(900 + ¢33) g1 902 33
= (P;iu + ¢§u,
00 O 0
0 ¢ll ¢l2 0
¢"iy= 0 ¢l2 — pl1 ’
¢ ¢ 0
00 0 0
¢00 ¢01 ¢02 %(¢00 + ¢33)
u ¢01 0 0 ¢01
Py’ = 02 0 0 02

%(¢00+¢33) ¢l ¢02 ¢33

Both ¢, and ¢, belong to A’, and ¢, has zero norm.
The physical part of ¢#¥ is contained in ¢4 whose
form makes it clear that there is no contribu-

tion from a vector Yy e H”,

YHY = puFv + kBVF i

About the possibility of eliminating the unphysical
part of ¢+ by means of a Lorentz transformation, we
have the following.

Statement 5: Given a vector ¢# € H’,it is in
general not true that it can be reduced to the form of
¢4¥. However, in each equivalence class (= H")
there is always a vector which can be put into the
form of qbl{” by means of a Lorentz transformation.
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Proof: To find a frame of reference in which ¢#*
has the form of ¢4” is equivalent to look for a time-
like solution of the equation

oWy, = 0. (Bl)
Indeed, if such a frame exists,v = (¢ 0 0 0) solves the
problem, and conversely, if the solution of Eq. (B1) is
timelike, in the rest system of v Eq. (B1) is

¢;10 =0,
and then Eq. (13) of Sec. 6 with ¢ = — 3 implies that

¢ has the form of ¢4”. It is easy to see that Eq.
(B1) has in general no solution. For example, if ¢#
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is such that
¢01: ¢02:¢13:¢23=¢32 20’ ¢00 =¢)33¢0’

it has no timelike eigenvector with zero eigenvalue,
and therefore cannot be transformed into the form of

ou.
The second part of the statement is obvious, since in
the same class of equivalence of ¢ one has also

G = W + kuFY + pVFH,
Fr = (——' ¢00/2k5 0; - ¢02/ky - 4’33/}2);

and ¢'#¥ has the form of g
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The 2z-dimensional eigenvalue problem, which arises when the random phase approximation (RPA) matrix
is not real, is reduced to an n-dimensional eigenvalue problem. Some properties of the reduced eigenvalue
problem are studied. A numerical example is considered for illustrative purposes.

1. INTRODUCTION

The random phase approximation (RPA) and the equa-
tions of motion method have been widely used?! for
calculating the vibrational collective states of nuclei.
Because of the presence of both the particle-hole
creation and destruction operators, one arrives at

2n X 2n non-Hermitian matrix of the general form

A B
C= <_B* _A*), (1)

where the n X n matrices A and B are Hermitian and
symmetric, respectively.

From the early days of the RPA calculations,? there
has been considerable interest in reducing the
27 X 2n eigenvalue problem
y .
» 2
¥4

(e ) (2) =

to ann X n eigenvalue problem. If the matrices A
and B are real symmetric and the combination mat-
rices A + B, A — B are at least positive semidefinite,
then such a reduction can be achieved by a method
proposed by Chi,3 in which one constructs a lower
triangular matrix. Due to the approximations which
go into setting up the matrix C, the positive semi-
definite condition imposed on the matrices A + B,

A — B may not be satisfied in practice. A more
general approach for the case of real symmetric
matrices A and B has been given by Ullah and Rowe .4
In this approach no condition has to be imposed on
the combination matrices A + B,A — B and only a
symmetric matrix diagonalization is needed to re-
duce the 27 X 2n eigenvalue problem given by Eq. (2)
to the following n X n eigenvalue problem:

RX = w2X, (3)

where R is ann X n symmetric matrix. It will be
real if one of the combination matrices A + B or
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The 2z-dimensional eigenvalue problem, which arises when the random phase approximation (RPA) matrix
is not real, is reduced to an n-dimensional eigenvalue problem. Some properties of the reduced eigenvalue
problem are studied. A numerical example is considered for illustrative purposes.

1. INTRODUCTION

The random phase approximation (RPA) and the equa-
tions of motion method have been widely used?! for
calculating the vibrational collective states of nuclei.
Because of the presence of both the particle-hole
creation and destruction operators, one arrives at

2n X 2n non-Hermitian matrix of the general form

A B
C= <_B* _A*), (1)

where the n X n matrices A and B are Hermitian and
symmetric, respectively.

From the early days of the RPA calculations,? there
has been considerable interest in reducing the
27 X 2n eigenvalue problem
y .
» 2
¥4

(e ) (2) =

to ann X n eigenvalue problem. If the matrices A
and B are real symmetric and the combination mat-
rices A + B, A — B are at least positive semidefinite,
then such a reduction can be achieved by a method
proposed by Chi,3 in which one constructs a lower
triangular matrix. Due to the approximations which
go into setting up the matrix C, the positive semi-
definite condition imposed on the matrices A + B,

A — B may not be satisfied in practice. A more
general approach for the case of real symmetric
matrices A and B has been given by Ullah and Rowe .4
In this approach no condition has to be imposed on
the combination matrices A + B,A — B and only a
symmetric matrix diagonalization is needed to re-
duce the 27 X 2n eigenvalue problem given by Eq. (2)
to the following n X n eigenvalue problem:

RX = w2X, (3)

where R is ann X n symmetric matrix. It will be
real if one of the combination matrices A + B or
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A — B have all positive or zero roots and complex if
both of them have negative roots.

In the usual RPA and equations of motion calculations,
the matrices A and B are almost invariably real and
the above methods suffice to reduce the 27 X 2#n
eigenvalue problem to ann X # eigenvalue problem,
However, recently it has been shown5 that, due to the
long range correlations of the residual two-body in-
teraction, one has to construct an intrinsically cor-
related RPA state from a given deformed Hartree-
Fock state. The projected states from an RPA cor-
related state are shown to be in much better agree-
ment with their experimental values than the ones
which are obtained with no RPA correlations present.
In such calculations one has to deal with the general-
ized RPA eigenvalue problem given by Eq. (2). The
purpose of the present note is to show how to reduce
the generalized 2# X 2x eigenvalue problem to an

n X n eigenvalue problem. In Sec.II we carry out this
reduction and pass on a couple of remarks on the re-
duced eigenvalue problem in Sec.III. For illustrative
purposes anumerical example is presented in Sec. IV.

O. DERIVATION OF THE REDUCED EIGENVALUE
EQUATION

We follow the method of Ref. 4 and introduce two new
vectors x and y which are related to the vectors ¥
and Z in the following way:

x=Y+2Z, (4a)

From Eq. (2) it is easy to see that these vectors
satisfy the following set of coupled equations:

Mx + iny = wy, (5a)
Ny —inx = wx, (5b)

where the matrices M,N,n are given by

M= 3[(A + A%) + B + B¥)], (6a)
N =3[(A + A*) — (B + BY)], (6D)
n = (1/2i)[(A — A*) — (B — B¥)]. (6c)

Since A is Hermitian and B symmetric, it is easy to
see from relations (6a), (6b), and (6¢) that the mat-
rices M and N are real symmetric and that the mat-
rix 1 is real. Further, if A and B would have been
real, the matrix 7 willbe zero and the set of equations
given by (5) is the same as the one given in Ref. 4 for
the real case.

Since the matrices M and N are real symmetric, we
can diagonalize them by a real orthogonal transfor-
mation. If one of these matrices, say M, has all posi-
tive roots, we diagonalize it first by a real orthogonal
matrix T,

TMT = M,, ("

where M, are the eigenvalues of M, which are all
positive. No such preference between M and N has
to be made if both of them have negative eigenvalues
and we can choose any one of them, say M again, for

J. Math. Phys., Vol. 13, No. 8, August 1972

N. ULLAH AND K. K. GUPTA

diagonalization. Applying this transformation to Eq.
(5), we get

Mgx' +in'y’ = wy’, (8a)
Ny —i'x’ = wx’, (8b)
where
N'=1INT, n' =TT, «' =Ty, y =Ty. (9)

Eliminating x’, ¥’ between Eqs. (8a), (8b), we arrive at
the following reduced n-dimensional eigenvalue prob-
lem:

[R—itw — w2]y” = 0, (10)
where _

R :M;/z[ /__n,Md—ln,]M(]i/z’ (lla)

£ = MYAAmMt— Mty MY, (11b)

y//: Md—llzy,- (llc)

It is easy to see from Eqgs. (11) that if all M, are
positive, then the n X n matrix R is real symmetric
and £ is real antisymmetric. K all M, are not posi-
tive,i.e., if both M and N have negative eigenvalues,
then the matrices R and ¢ will be complex symmetric
and complex antisymmetric, respectively. For the
case where both the matrices A and B are real sym-
metric, the reduced eigenvalue equation (10) becomes
the same as Eq. (3), as it should be.

In arriving at Eq. (10), we have assumed that none of
the M,'s are zero. If some of the M,'s are zero, the
dimensionality of Eq. (10) is further reduced, but its
structure becomes more complicated. This does not
happen in case of real symmetric matrices A and B,
since the matrix 7 is then zero.

. REMARKS ON THE REDUCED EIGENVALUE
EQUATION

We would first like to show that the coefficient of w
in the reduced eigenvalue equation (10) cannot be
eliminated by a nonsingular linear transformation of
the vectors y". To see this, let us write

yn — le/’ (12)

in Eq. (10) and multiply it from the left by S™1. This
gives us

[STLRS — iS™1£Sw — w2]x” = 0. (13)
The condition
S8 =0 (14)

will be satisfied only if the antisymmetric matrix ¢
is zero. This shows that the coefficient of w cannot
be eliminated by a nonsingular linear transformation
of the vectors y”.

Since the matrix R is symmetric and ¢ antisymmet-
ric, we can also write the eigenvalue equation (10) in
the following form:

(P —w)(P +wy” =0, (15)

where the matrix P satisfies the relations
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b P =ig, (16a)

PP =R. (16b)

Since any nonsingular complex matrix can be written
as a product of a complex symmetric matrix S and
an orthogonal matrix @,% we write P as

P =8@. (mn
Equation (16b) immediately determines S,
S2 =R. (18)

If the dimensions of @ are not very large, then, using
the parametrized form of the complex orthogonal
matrix, we can determine it from Eq. (16a). We shall
construct the matrix P for the numerical example,
which we consider in Sec.IV.

Since the eigenvalues w occur in pairs (w,— w), we

can find them by determining the eigenvalues of the
matrix P, for the lower dimensions where this mat-
rix can be easily constructed.

IV. NUMERICAL EXAMPLE

We would now like to consider a numerical example.
Let us take the Hermitian matrix A to be

2 i
A= ) s
—i 2
and the symmetric matrix B to be
—1 i
B = . .
i —1

The 4 X 4 eigenvalue equation (2) gives the following
eigenvalues:
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w; = VI + 1), w,=—i)/4W3- 1),
Wy =—W;, Wy4=—w,.

The matrices M,N,n can be easily calculated and are
given by

o) w9 0e (2.

The reduced 2 X 2 eigenvalue equation is given by

—1—w? 2w ] 0
—2iw 3—w? \yy)

As can be easily seen, it gives the same four eigen-
values, which were obtained from the 4 X 4 eigenvalue
equation. The matrix P can be easily constructed in
this case using Egs. (16), (17), and (18), and is given by

@)VAE — 1) — 6T+ 1)] 163 +9)
<(%)1/2(1 —iv3) E)VA[WE+ 1) +iWE— 1)]>'

The eigenvalues of P are wy, w,.

In our example all the eigenvalues w of the RPA mat-
rix C are not real. This is obvious if we use Thou-
less' theorem,”? which says that if the eigenvalues of
the associated Hermitian matrix

(o

are not all positive, then all the w's cannot be real.

We remark at the end that if the antisymmetric mat-
rix ¢ is small compared to the symmetric matrix R
in the reduced eigenvalue equation (10), then the effect
of ¢ can be calculated by perturbation approximation.
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Certain nonlinear field theories exhibit particlelike structures called “kinks” that have fermionlike properties.

This paper uses a Feynman path integral approach to show that, in the quantum theory, the number of kinks and
the spin associated with them are both conserved quantities.

1. INTRODUCTION

It has been pointed out by a number of authors!:2

that certain nonlinear classical field theories possess
particlelike structures that are strictly conserved

in number for topological reasons, irrespective of

the particular dynamics of the system. Such struc-
tures are called “kinks.” An example of a one-dimen-
sional theory that “admits” kinks is found by con-~
sidering the set of all mappings3 o from the real line
R1 into the circle S,

a:R1—> 81,

subject to the boundary conditions

a(x) > O0(mod2w) asx— + ©,

where ¥ € R1, The field o can be represented by a
narrow strip stretching from x = —®© to x = + ®,
and a kink may then be pictured intuitively as a 27
twist in the strip. As a result of the boundary condi-
tions the number of kinks is strictly conserved in
time, Skyrmel has generalized this theory to three
dimensions by considering the set of mappings from
three-dimensional space R3 into a 3-sphere S3. Thus
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three angular variables, a4, &,, a5, are involved.
Alternatively,S3 can be parametrized by four real
variables ¢ , p =1, 2, 3, 4, whose squares sum to
unity. Anotﬁer three-dimensional example is pro-
vided by considering the set of mappings from R3 into
the space S, , of general relativity.4 (This is the set
of all 4 X 4 real, symmetric matrices of signature 1),
Both of these three-dimensional theories have appro-
priate boundary conditions so that the number of
kinks is conserved. Furthermore, it has been shown5
for both these theories that it is possible to define
wavefunctionals on the space of mappings that are
doublevalued under 27 rotations. Following Finkel-
stein,2 such theories will be said to “admit spin”

(or admit half-integer spin).

Suppose that a field theory is given involving map-
pings ¢ from R3 into any manifold ¥,

¢ :R3-Y

and that appropriate boundary conditions are also
supplied. We denote the set of such mappings by
M(R3,Y). Furthermore, we assume that the theory
admits both kinks and spin. Although the kink number
is conserved in the classical theory, one might
imagine that when the theory is quantized that quan-
tum jumps would be permissible from an n-kink state
to an m-kink state,n # m. Also, bearing in mind the
way in which spin is described in such theories, one
might imagine that in the quantized theory a state of
half-integer spin might evolve into a state of integer
spin. It is the purpose of this paper to point out that
neither of these occurs and that both the kink number
and the spin are conserved in the quantum theory.

The proof of conservation given in this paper is
stronger than that of Finkelstein and Rubinstein,2
which applies for the case of classical fields.

2. CONSERVATION OF KINKS

Consider the field theory defined by the mappings

¢ € M(R3,Y). Thus ¢(x) € Y, where x is any point of
R3. In quantizing such a theory, let us suppose that
the evolution of the system from an initial field con-
figuration ¢, at a time ¢ = ¢ to a later field con-
figuration ¢, at a time ¢ = {, is given by a Feynman
integral over all possible paths® joining ¢, and ¢;.
We use ¢ to label the different mappings that occur
along a path, and write ¢(¢):

(p(ta) = (pai
o(ty) = @.

We shall use ¢(x; t) to denote the point of ¥ onto which
x € R3 is mapped by the mapping ¢(f) € M(R3,Y).

An infinitesimal volume in M(R3,Y) will be represent-
ed symbolically by

(1)

D(p) =N 1? do(x), (2)

where N is a normalization constant, independent of ¢.
In terms of a sufficiently accurate finite-dimensional
approximation to the space of the ¢(x), the infinitesi-
mal volume element of Eq. (2) is a displacement-
invariant Haar measure.? As an example consider

the three-dimensional theory of Skyrme in which
three angular variables ¢4, a,, &5 are involved.
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Writing |a| = [af(x) + a3&x) + a2(x)[1/2, the infini-
tesimal volume element is given by

:D(Oll, Q,, a3) = Nal? [2(Siné—| al)/lal ]Zdal(x)
X da,(X) da 4(x).

Let us now consider the kernel K(¢;, ¢,; £, — t,) for
the propagation from a field configuration ¢, at a
time £, to a field configuration ¢, at a time #,. K
must satisfy the following composition law:

K@y, 033ty — t,)=JK(@y, 9;t, — VK(@, 9,5t — 1,)D(0).

This can be expressed as an iteration of the propaga-
tion kernel for infinitesimal time differences A ¢:

K(‘Pb: qoa; tb - ta)

= n Klo(x; t, + mat), o(x;t, + (m —1)At); At ]

m=1

M
x I D(g(x;t, + mAtL)). (3)

m=1

As At = (t,— t,)/M— 0,time assumes the role of a
continuous parameter.

Let D denote the metric on the manifold Y. Then a
metric d on the space M(R3,Y) can be defined by
writing

dloy, 9] = mf;%f D[o1(x), ¢5(x)],

where ¢4, 9, € M(R3,Y). This is a natural definition,
for then the metric topology on M(R3,Y) coincides
with the compact-open topology. Let ¢, be a field
with n, kinks and ¢, be a field with n, kinks,n, = n,.
Because such fields are not homotopic, ¢, cannot be
joined to ¢, by a continuous path. Since Eq. (1) is
true, the path defined by ¢ () must have at least one dis-
continuity. It follows that there must be at least one
value of ¢, call it £, such that

dle(t, + Af) —o(t)]= B> 0

for any time interval Af, no matter how small. To
show that such a lower bound exists, let us suppose
that it does not. Thus by letting A{ tend to zero,
d[e(t, + t) — ¢(t,)] can be made as small as possible.
Hence

max D{o(x; t, + A1) — ¢(x;1,)] > 0

x€R?’

asAt— 0,

o Plox; t, + At) — o(x;4,)] > 0
o(x; t, + At) > o(x; ¢,)

asAt— 0 for all x,

as At— 0 for all x.

However, ¢(x; {,) is an n,-kink field and ¢(X; f, + At)
is an n,-kink field, and such fields cannot be con-
tinuously deformed into each other. Hence contradic-
tion. Hence the metric d between two fields of dif-
ferent kink number has a lower bound.

Consider the factors making up the product in Eq. (3).
According to Feynman's prescription, the infinitesimal
propagation kernel has the form

Klo(x; ¢, + mAl), (x; ¢, + (m — 1)At); At]
= A1 exp(iL[p, @]at), (4)
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where L is the Lagrangian of the system. For non-
linear field theories there is some difficulty in in-
terpreting @ and @. Symbolically, we “define”

¢ = 3lo® (, +mat) + o(x; ¢, + (m —1)a)],

@ = (A o(x; £, + mAl) — @(x;t, + (m — 1)ad)].
For Skyrme's theory fﬁ would involve terms like
(At)‘l[d)p(x; t, +mAt) — ¢p(x; t, + (n — 1)At)]-C(¢p).

C(cpp) is a function of the fields at time ¢, + maf. For

a physical field theory, the Lagrangian should con-
tain a term quadratic in @, and thus the infinitesimal
propagator of Eq. (4) will contain terms like

exp{i [@(x; t, + mAt) — @(x; t, + (m—1)AN)]2/at},
and in particular it will contain a term for which
Lt m—1at<t, <t + mat.

As At — 0 there will always be such a term, and, since
the metric connecting fields across the discontinuity
has a nonzero lower bound, the argument of the ex-
ponential will tend to infinity, thus giving a rapidly
oscillating term that will cancel out any contributions

to the propagator of Eq. (3). Thus if the fields ¢,, ¢,
contain a different number of kinks,

K@y, 0,5, — 1) =0,

3. CONSERVATION OF SPIN

Schulman® has pointed out that the path integral in a
multiply connected space has complications owing to
the fact that paths in different homotopy classes can-
not be continuously deformed into each other. He
showed that while the partial probability amplitude

KB® for a transition involving only paths in homotopy
class 8 may be obtained by performing the path in-
tegration over all paths belonging to this class, the
total probability amplitude K involves a sum of the
K8 with unknown weight factors:

K=ZB) A(B)KB. (%)

It has been shown by Laidlaw and DeWitt® that the

A (B) must form a scalar unitary representation of
the fundamental group of the space. The space that
we are considering is M(R3,Y). The fact that we are
assuming M(R3,Y) to admit spin means that the
fundamental group 7,(M(R3,Y)) equals Z,, the group
of integers modulo 2:

7,(MR3,Y)) = Z,. (6)

Thus A (8) takes on only the values + 1.

Let ¢,, ¢, € M(R3,Y) be 1-kink mappings. Denote the
total amplitude for transition between ¢, at time ¢,
and ¢, at time f, by K(@, ¥,; & — 1,). Now for the
theory to admit spin we need more than Eq. (6). Let
us suppose that a path from ¢, to ¢, , labeled by time
running from {, to #,, belongs to homotopy class 1.
We shall write the partial probability amplitude cor-
responding to such paths as K (¢,, ¢2;t, —t,). Using
Eq. (6), we can rewrite Eq. (5) as
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K(@ys 93 by — 1) = K(@y, 935 4, — 1) — K(@y, 923 8, — 1,).

Similarly, if ¢, is reached by a path which involves
rotating ¢, through 27 and then following a path of
homotopy class 1, then we shall write Rzﬂcpa1 in the
partial probability amplitude. For the theory to admit
spin, it must be shown that

Ranal = (paz

for all ¢, € M(R3,Y). Of course, if this is true, it
follows that

R, .92 = ¢}
and

K((Pb’RZw(pa;tb ——ta)'—__K((pby (Pa; tb _ta)' (7)

We wish to show that if Eq. (7) holds for a particular
state K(¢,, ¢,; , — t,) of the system, then it holds for
any state K(¢,, ¢,, t, — 1,) into which the system may
evolve, That is to say, we wish to show that spin is
conserved. (Clearly, ¢, and ¢, must be fields cor-
responding to an equal number of kinks.)

Let Eq. (7) be true for a particular ¢, € M(R3,Y) and
let ¢, be any member of M(R3,Y) containing the same
number of kinks as ¢,. First of all, consider an in-
finitesimal time change 4, = f + 6. Since this can-
not bring about a flip in sign, Eq. (7) implies

K((pb’R2n¢a; tb + 6t - ta) = —K((pb, (pa; tb + ét— ta)'

By constructing a continuous sequence of such small
time differences, a finite time difference can be built
up, and it follows that

K((pb’RZ‘"(pa; to - ta)z _K((Pbr G5 to - ta)'

Suppose that an amplitude K(¢,, ¢,; ¢, — ¢,) is given.
We can choose #, such that ¢, < ¢,. By the composi-
tion law for Feynman integrals
K(e) 905 t, — )
= [K(@,, @3 b, — 1) K@y, 0,5 ty — 1) D(@y);

K(@ Rop@ps b, — 1)
TE(@, @y t, = 1) K@y, Ry 104y tg — 1) D (@)
- fK(%’ @y b, — L) K(@y, @4y Ly — 1) D ()
—K(QDC, Pas tc - ta)’

which is the desired result.

4. SUMMARY

This paper has explained how, in a nonlinear quantum
field theory, the number of kinks and the associated
spin must both be conserved quantities. Conservation
of kinks was proved by showing that the transition
amplitude between states of different kink number in-
volved only discontinuous paths whose contribution
was zero. The conservation of spin was shown to be
a natural consequence of the composition law for
Feynman integrals,
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The thermodynamic limit of a classical system with many-body interactions and under the influence of an ex-
ternal potential is investigated for the canonical ensemble. By scaling the external potential to a sequence of
domains which are isotropic expansions of an initial domain confining the system, it is shown that the canonical
free energy per particle has an infinite system limit. Moreover, by restricting consideration to internal inter-
actions which have the property that separated groups of particles have negligible mutual attractive energy as
the system becomes infinite, it is proven that the free energy per particle limit is precisely the free energy per
particle obtained by minimizing the integral f[¢p + f(p, B)] with respect to all properly normalized functions
p(r). ¢ is the external potential; f(p, 8) is the free energy per unit volume for a uniform system of density p and
inverse temperature 8. The only technical complication is the above-mentioned restriction on the allowed in-
ternal interactions. It is demonstrated that there exists a wide class of many-body interactions which have the
required separation properties., The simplest example is a two-body interaction which includes a hard core.

1. INTRODUCTION

We shall consider a classical system specified by a
Hamiltonian of the form

£ 6) Uy, .nnyny),  (L1)

i=1

where U,(xq,...,%,) is an z -particle interaction po-
tential and ¢(x) is a single-particle external potential
dependent on a position variable x. Let ¢(x) be de-
fined on a bounded domain A contained in Euclidean
space. The interaction and external potentials may
depend on other internal coordinates having a fixed
bounded range, but these coordinates will make no
essential change in our analysis. We assume that the
potential U,(x,...,x,) is symmetric in the variables
x; and that U, is translationally invariant.

For # particles confined to the domain A, the canoni-
cal partition function is

Z(A,n, B, ¢) = (2nm/B)3"2Q(A, 1, B, 0), (1.2)
where Q(A, n, B, ¢) is the configurational partition
function given by

Q(A7 n, B, ¢’) zfl!‘fl\ndxl'“dxn

n

X exp —3<2 ¢(x1,) + Un(xl’ "',xn)> : (1-3)

i=1

The free energy per particle is given by

- (B_l/n) ]-nZ(A7 n, B, ¢)' (1' 4)
In order to obtain a well-defined infinite system free
energy per particle for a nonuniform system given
by (1.1), it is necessary that we consider a sequence
of external potentials {(A, ¢)} where each potential is
paired with one member of an expanding sequence of
domains {A}. We shall define the thermodynamic
limit as follows. Let ¢, be defined on a domain A,.
Then for each n = n, for some positive integer r,, we
define a sequence {(A, ¢)} by
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A ={xlx = (n/n) 3y, y € Ao}
and
¢(x) = po(y) where y = (ny/n)l/3x,

(1.5)
all x € A,

The domains of the sequence defined by (1, 5) satisfy
the constraint

nV(A) 1 = nOV(A())'l = Po» (1.6)
where V(A) denotes the volume (Lebesque measure)

of A, The configurational free energy per particle is
given by

— BF (A, n, B, d) = v~ 1 InQ(A, n, B, ¢), (1.7
and we shall say that the thermodynamic limit exists
if the sequence {F(A, , 8, ¢)} converges for the se-
quence {(A, ¢)} defined by (I. 5).

As required for the existence of the thermodynamic
limit of uniform systems, we assume that the inter-
action U, is stable and tempered.? Then ¢ = O on A
gives that

lir{nﬁ = pgifipy), (1.8)
where f(p) is a convex function defined on an interval
O=<p=< Pep .2 The function f is also a concave func-

tion of g1, but we will not be concerned with this de-
pendence. For the sequence (1. 5), we have the result

V(A) L[ empedx = V(A)1 [ esedPdx  (1.9)
0

for all n= n, if the integral on the right exists. Then
for the case that U, = 0 for all «, the sequence {F}
converges. In the general case, we can show that the
sequence {F} is bounded since the stability condition

U %1,...,%,)=—bn (b >0) (1.10)
which holds for all (x,...,x,) and all » gives
lim iI’}fEF = — 11 —1np, + Bb
+ m(V(A)-lfAe—w(x)dx)]. (1.11)

With the restriction 0 < p, < p,, we obtain
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The thermodynamic limit of a classical system with many-body interactions and under the influence of an ex-
ternal potential is investigated for the canonical ensemble. By scaling the external potential to a sequence of
domains which are isotropic expansions of an initial domain confining the system, it is shown that the canonical
free energy per particle has an infinite system limit. Moreover, by restricting consideration to internal inter-
actions which have the property that separated groups of particles have negligible mutual attractive energy as
the system becomes infinite, it is proven that the free energy per particle limit is precisely the free energy per
particle obtained by minimizing the integral f[¢p + f(p, B)] with respect to all properly normalized functions
p(r). ¢ is the external potential; f(p, 8) is the free energy per unit volume for a uniform system of density p and
inverse temperature 8. The only technical complication is the above-mentioned restriction on the allowed in-
ternal interactions. It is demonstrated that there exists a wide class of many-body interactions which have the
required separation properties., The simplest example is a two-body interaction which includes a hard core.

1. INTRODUCTION

We shall consider a classical system specified by a
Hamiltonian of the form

£ 6) Uy, .nnyny),  (L1)

i=1

where U,(xq,...,%,) is an z -particle interaction po-
tential and ¢(x) is a single-particle external potential
dependent on a position variable x. Let ¢(x) be de-
fined on a bounded domain A contained in Euclidean
space. The interaction and external potentials may
depend on other internal coordinates having a fixed
bounded range, but these coordinates will make no
essential change in our analysis. We assume that the
potential U,(x,...,x,) is symmetric in the variables
x; and that U, is translationally invariant.

For # particles confined to the domain A, the canoni-
cal partition function is

Z(A,n, B, ¢) = (2nm/B)3"2Q(A, 1, B, 0), (1.2)
where Q(A, n, B, ¢) is the configurational partition
function given by

Q(A7 n, B, ¢’) zfl!‘fl\ndxl'“dxn

n

X exp —3<2 ¢(x1,) + Un(xl’ "',xn)> : (1-3)

i=1

The free energy per particle is given by

- (B_l/n) ]-nZ(A7 n, B, ¢)' (1' 4)
In order to obtain a well-defined infinite system free
energy per particle for a nonuniform system given
by (1.1), it is necessary that we consider a sequence
of external potentials {(A, ¢)} where each potential is
paired with one member of an expanding sequence of
domains {A}. We shall define the thermodynamic
limit as follows. Let ¢, be defined on a domain A,.
Then for each n = n, for some positive integer r,, we
define a sequence {(A, ¢)} by
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A ={xlx = (n/n) 3y, y € Ao}
and
¢(x) = po(y) where y = (ny/n)l/3x,

(1.5)
all x € A,

The domains of the sequence defined by (1, 5) satisfy
the constraint

nV(A) 1 = nOV(A())'l = Po» (1.6)
where V(A) denotes the volume (Lebesque measure)

of A, The configurational free energy per particle is
given by

— BF (A, n, B, d) = v~ 1 InQ(A, n, B, ¢), (1.7
and we shall say that the thermodynamic limit exists
if the sequence {F(A, , 8, ¢)} converges for the se-
quence {(A, ¢)} defined by (I. 5).

As required for the existence of the thermodynamic
limit of uniform systems, we assume that the inter-
action U, is stable and tempered.? Then ¢ = O on A
gives that

lir{nﬁ = pgifipy), (1.8)
where f(p) is a convex function defined on an interval
O=<p=< Pep .2 The function f is also a concave func-

tion of g1, but we will not be concerned with this de-
pendence. For the sequence (1. 5), we have the result

V(A) L[ empedx = V(A)1 [ esedPdx  (1.9)
0

for all n= n, if the integral on the right exists. Then
for the case that U, = 0 for all «, the sequence {F}
converges. In the general case, we can show that the
sequence {F} is bounded since the stability condition

U %1,...,%,)=—bn (b >0) (1.10)
which holds for all (x,...,x,) and all » gives
lim iI’}fEF = — 11 —1np, + Bb
+ m(V(A)-lfAe—w(x)dx)]. (1.11)

With the restriction 0 < p, < p,, we obtain
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lim sup¥ =< pglf(py) — A1 In(V(A)L f e~B o dy),
" A (1.12)
2. THE THERMODYNAMIC LIMIT

In this section, we shall establish three main theo-
rems. We begin with some terminology. A step po-
tential ¢, (simple function) of » steps defined on A is
a function of the form

r
¢, (%) = _Z‘,laicm., 2.1)

is
where the a; are real constants, {Ai}{:l is a partition
of A into 7 disjoint subdomains such that their union
equals A, and C,; is the characteristic function of each
A,. We also require that each A, has a connected in-
terior and that ¥(A,) - «© in the Fisher sense for
eachi=1,...,r as n > ®,3 A sequence {(A, ¢,)} of
step potentials is obtained from some initial step po-
tential as defined by (1. 5) so that

VA VA =w;, (i=1,...,7) (2.2)

holds for all n = n,, where each w; is a fixed constant.
On each A the supremum norm of ¢ is defined by

el = sll\lplqﬁ(x)l = llgoll. (2.3)

Now, if ¢, is the uniform limit of a sequence of step
potentials defined on A, then ¢, = ¢ equiuniformly on
each A as 7 — ©, Then for each » the norm {[¢ — ¢, ||
defined over A by (2.3) is a constant for all # = n,,.

We obtain an important property:

Lemma 2.1: Let ¢, = ¢ uniformly on A. Then,
for every € > 0, there exists an s such that

|5(A, 7, B, ¢) — F(A, 7, B,¢,) s €

holds for all » = n, whenever r > s.

2.9

Proof: Given € > 0 there exists an s such that

o — o, <e

holds for all »= »n; whenever » > s. Hence

(2.5)

e BnQ(A,m B, 0) = Q(A,n,B,¢,) < efnQ(A,n, B, ¢)

(2.6)
holds for all # and gives (2. 4).

We continue by defining a class of interactions U,
which yield the result that the thermodynamic limit
exists for step potentials. Let E donote three-dimen-
sional Euclidean space. The domains A are bounded
subsets of E. For i=1,...,7 let X, = (x,.. .,xni),

where X, € E* . We denote X = (X4, ...,X,), where
X cErand 2;] n,=n, WithX = (x,...,%,) the in-
teraction potential can be decomposed as follows:
r
U,(X) = Z}luni(Xi) + ¥ (Xq,...,X,), (2.7)
1=
where 207, n, = n and where ¥ (X,,...,X,) repre-
sents the mutual potential energy of » collections of
particles having »; particles in the collection X;. For
X ={(x4,...,x,) the notation x € X; with n, = 1 will
mean that x is one of the components x,...,x,. In
case n; = 0, then X; is a null point and has no com-
ponents. We shall say that an interaction is asympto-
tically additive if the following holds.
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Definition 2.1: For each integer »= 2:

(i) Temperedness: There exist positive constants,w,
A, and R, independent of 7 such that

[, (X, ..., X,) swn2/d3+> (2.8)
for all n whenever d > R, where d = min{ D(X;, X ;)|
n;,m; = 1,i # j} and where D(X;,X,) = inf{|x —x']]
x € j(i,x’ eXit, 43 =1,...,7.
(ii) Let {A,}7, be a disjoint partition of A satisfying
(2. 2) such that each A; has a connected interior and
V(A,;) = ® in the Fisher sense as n . Define for
each R = 0 a sequence of sets

Qp={(xy,...,%) € A*|x, — x| =R if i # j;

i,j:l,...,r}. (2.9)

For every € > 0, there exists an N(¢) and sequences
{R} and {A} (as functions of #) with lim A = + © such
that

UX)z —nb+nA
and
¥ (X

if XeA"—Q,
LX)=—en if XeQp

whenever n> N(e) and X; € A}f, i=1,...,7,with
r

241 n; = n. Part (ii) of Definition 2.1 can be stated

in another form without reference to the sets {Q,}.
For every (X{,...,X,) =X
¥ (X1,.0.,X,)< —en implies U(X)z —nb +nA
(2.10)
whenever n > N(e) and X, € Aji(i=1,...,7) with
iz} By =R

The condition (2. 10) has the effect that groups of par-
ticles confined by different wall-less containers (the
subdomains A,) in contact will have negligible mutual
attractive energy as the containers become infinitely
large. Asymptotic additivity will give the result that
the free energy per particle associated with accumu-
lations of particles near the boundaries of the sub-
domains A, is negligible in the thermodynamic limit.
For positive and tempered interactions we can take
Qp = A" for all » and satisfy Definition 2. 1. Hence the
class of asymptotically additive interactions is non-

empty.

Theovem 2.1: LetU, (x4,...,x,) be stable and
asymptotically additive. Then the sequence {F(A, , 8,
qb,)} converges for a step potential ¢, . Furthermore,
if ¢ is the uniform limit of a sequence of step poten-
tials defined on A, then the thermodynamic limit exists
for ¢.

If ¢ is the uniform limit of a sequence {¢,} of step
potentials, the convergence of {§; is an immediate
consequence of Lemma 2.1, After stating our second
main theorem, we shall return to the proof of Theorem
2.1 in Sec. 4.

Let f(po) be the free energy per unit volume assoc-
iated with the thermodynamic limit of a uniform sys-
tem determined by an asymptotically additive inter-
action U, (x{,...,%,). The function f(py) is continuous
and convex on an interval 0 < p, < Pcp» We define a
convex functional

Fip) = 5 [ fp()ax (2.11)
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on all density distributions p(x) defined and integrable
on A. For ¢ integrable on A we let

(@,0) = 5 J o). (2.1

Two norms we will use are
1
lol = swplp(x)|  and lplly =/, lo)]dx.  (2.13)

Let ¢ be the uniform limit of a sequence {¢, } of step
potentials of form (2.1). We will write
r
P, (x) = _ElpiCAi (2.14)
i
for the same partition {A,}7_, which determines ¢, on
A, For each » we define a special set of density dis-
tributions on A:
D,={p,=0] |p,ll; = 1}. (2.15)

Let L denote the real normed linear space of all
bounded Lebesque measurable functions on A with un-

iform norm [+|l. The space L is a Banach space. Let
s={pcLllpl<p,) (2.16)
and
D =l£ D'r (2. 17)

be the closure of U, D, in L. With these definitions
we obtain

Lemma 2.2: The convex functional F is contin-
uous in S N domF with respect to the uniform norm.

The proof of Lemma 2,2 follows directly from the
uniform continuity of f on every closed subinterval of
[0, Pcp)- The next two theorems identify the thermo-
dynamic limit.

Theorem 2.2: Let ¢ be a uniform limit of step
potentials on A. Then

UmI(A, 7, B, ¢) = infl(9, p) + F(p)} (2.18)

when nV(A)™1 = pg < pg,.

One should note that if ¢ is a step potential ¢, , then
the infimum in (2, 18) is taken over D, N S, Our last
main theorem is

Theorem 2.3: Let the interaction U, (x4, ...,%,)
be stable and asymptotically additive. Let ¢ defined
on A be a step potential or the uniform limit of a se-
quence of step potentials defined on A. Then

li’fns:(Ay n, By ¢) = mf{(¢7 P) + F(P) | ”P”l = 1} (2- 19)

when zV(A)1 = p, < Pepe
In the next section we give some examples of asym-

ptotically additive interactions and in the following
sections prove the main theorems,

3. ASYMPTOTICALLY ADDITIVE INTERACTIONS

We indicate now criteria under which interactions con-
structed from pair potentials are asymptotically addi-
tive. A pair potential ®(x) is a symmetric and bound
below measurable function. The interaction is given

by
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Uy®1y-00,%,) =3 2 8(x; — ). (3.1)
i#j
Interactions for which ¥ (X,,...,X,) is always non-

negative are the first examples of asymptotically addi-
tive interactions.

Proposition 3.1: (a) If &(x) = 0 all x and (b) there

exist positive constants w, A, and R o Such that

| @(x)| < w/|x|3+> (3.2)

if |x| = R, then U, is stable and asymptotically addi-
tive.

For pair potentials we shall always assume that part
(b) of Proposition 3.1 holds. Then the interaction
(3.1) will be tempered.

Proposition 3.2: (a) Hard core: There exists R, >
0 such that &(x) = +© if |x| <R, and (b) there exists
b > 0 such that
" b
b(x)= — — 3.3
121 ’ R} (3.3)
holds for all z and all (x4, ...,x,) with [x; — x| = R,
for ¢ = j, then (3. 1) is stable and asymptotically addi-

tive, The proof of Proposition 3, 2 will be delayed and
given as a special case of the following.

Pyoposition 3.3: (a) Let @, c,and R, be positive
constants such that

dx)=c/|x|>
if x| <R,.

(b) Suppose there exists a constant 4 > 0 such that for
everyR> 0

i b

O(x,)= — —

i1 O3 R3
holds for all » and all (x4,...,%,) with |x; — x| = R
for ¢ # j. Then there exists sufficiently large @ such
that the interaction (3.1) is stable and asymptotically
additive.

In particular, condition (3. 5) will hold if there exists
a positive decreasing function ®4(f) on [0, %) such
that

(3.4)

(3.5)

f0°°q>0(t)t2dt <o and  &(x) = — (lx])

for all x. (3.6)
Ruelle has shown that interactions satisfying (3. 6)
and (3. 4) with & > 3 are superstable. He has also
shown that interactions satisfying (3. 3) are stable.
We shall now prove asymptotic additivity for the Pro-
positions 3.2 and 3. 3.

Proof: Temperedness is assumed so that we need
only show that part (ii) of Definition 2.1 holds, Ob-
serve that there is a largest constant b > 0 such that
®(x)= —band U,(xy,...,x,) = — nb as well as (3. 3)
and (3. 5) hold. Letr be a fixed positive integer and
let {A;};_; be a disjoint partition of A with V(A;)— +
o in the Fisher senseas n 2o, ¢=1,..,,7. Let
dA,; denote the boundary of A;. Then, by the regularity
of each A, there exists a boundary region B; C A;
each 7 and a divergent sequence {d} such that
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V(BYV(AY1 > 0 and #»/d3** >0 asn—>®
where
B=0B, and B,={xe A,ID(x,oA,) = d}

i=1

fori=1,...,7.

Here D(x, 9A;) is the distance between x and the
boundary 3A;. For Proposition 3.3 we restrict con-
sideration to partitions of A which satisfy

V(A)*6/V(B)* 20 asn —® (3.7
for some a, If V(B) = V(A)® with 0 < 6 < 1, then the
condition (3.7) will occur. We define
Qp={(1,+.0,%,) € A% | 1%, — x| 2R i i % j}. (3.8)
Given € > 0, we shall construct sequences {R} and {A}
with lin’}A = o such that

U,X)= —nb+nA ifXcA"—-Qp
and
Y (Xiyeen,

X,)=—ne HXecQ,

where

X =(Xy,...,X,)withX; € ATi(i=1,...,7),

r

2.n; =n whenever n is sufficiently large.

i=1
Let X, = (X, — ¥,, ¥,) where ¥, € Bi for 0 < k, < n,,
i=1,...,7. The points of X; not in B; are X; — ¥;.

Now the mutual potential can be decomposed as
follows:

r-1 r
UV (X1, X,)=20 2 2 25 ®x—y). (3.9
j=1 yeX]- i=j+l x€X;
For X € Q,, we have
E > (x) = — — (3.10)
i=j+1 x€X;
which gives
r ) b
T L Zek-y=—k- (3.11)
YEY i=jrl x€X; R
for (j=1,...,7r —1). Temperedness gives that
r-1 r nz
>, 2 dx—y)= —w . (3.12)
ifl ye(X;-%) i=j1 xeX; das+x
From (3. 11) and (3.12) we obtain
n2 b
\I’n(Xl! .,X,)z—wd3+)\ — };3_’ (3.13)
where k£ =237, k.
X e A" — Q, for R <R, then lx —x,| <R for
some j and [ w1th] # I; and
U/X)= —2bn+ ¢/R* (3.149
since
Z} Px, —x;)= — (n—2)b + Bx; —x;). (3.15)

i=1,i=l
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If R, is the hard core distance, then X € A" — Qp with
R = R1 implies U, (X) = + o, Now there exists a con-
stant ¢, > 0 such “that cl/R3 is an upper bound for the
max1mum packing density of spheres of radius R/2.
Let ¢, > 0 be such that for allR > 0

k/V(B) > c¢,/R3 implies X ¢ Q5.
Let the sequences {R} and {A} be determined by
R-6 = (bcy) L (e —wn/d3*N)n/V(B)]

and
C/R“ = n(A + b).

(3.16)
(3.17)

Note that lim A = + « by condition (3.7).
Now suppose that

¥.(X,..,X)<—¢€n

for X € Q5. Then (3.13) implies that
k/V(B)> (R3/b)e —wn/d3*}[n/V(B)] = ¢,/R3,
(3.18)

which implies X ¢ @ (if # sufficiently large) a con-
tradiction. For hard cores we can take the sequence
{R} to be a constant sequence R = R, all » and {A}
can be any divergent sequence of positive numbers.
Let N(¢) be such that

€ > wn/d3+A (3.19)

if n> N(e); then (3.16),(3.17), and (3.18) hold. This
completes the proof of the propositions.

4. THERMODYNAMIC LIMIT FOR STEP
POTENTIALS

In this section we shall prove Theorem 2.1. Let ¢,
be a step potential defined on A as given by (2 1).
The associated disjoint partition of A is {A,}; ;. The
configurational partition function (1. 3) defined for ¢,
has the following expansion:

n n r e‘Baini
Q(A’n,B’¢1)= Z) "'Z; H !
n,=0 n,=0 i-1
n1+ +n,r=n
x [ et Pux ...ax, (4.1)
ﬁA?’
i=1
with notation X = (X,,...,X,). We now define a se-

quence of functions F, ,
variable by

of an v -dimensional vector

1 -
Fp)=—8"1~ " ,f e B Xax ...dx, |,
i 1 l'I A i
i=1
(4.2)
where for each n the domain D, of F,  is the finite

set of all

y — (P]_,---,py)
such that
p; = n,,/ V(Ai)
and such that

for0=n;=n, i=1,...,7, (4.3)
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r

Ewipi = Po-

i

(4.4)

With ¢, = (a4,...,a,) andp, = (py,...,p,) we define

($,,p,) = Pbl_El WidiP; . (4.5)
1=
We further define
3:’::7! = ilr)lfn{(¢'r,p'r) + Fy,n(pr)}° (4' 6)

Since D, , is a finite set, there exists, for each n, a
P}, € D, , at which (4. 6) assumes its minimum,
Then

ﬂz;jn = (¢w p:n) + Fr,n :.n)'

Now the sum (4.1) is comprised of less than (» + 1)
distinct nonnegative terms so that by factoring out a
largest term from this sum we obtain the inequality

(4.8)

(4.7

0=5}, — (A, nB8¢,) < 71r/n) In(r + 1).

Therefore, the thermodynamic limit for an external
step potential ¢, exists if and only if the sequence
{§},} of minima converges. To prove that the se-
quence (4.7) converges, we shall need the next pro-
position which will utilize the properties of asympto-
tically additive interactions. We first give some de-
finitions,

We define another convex function of an » -dimensional
vector variable by

r
F,(p,) = p5" Zywif(ps) (4.9)
i=
where the domain of this function is all p, =
(P15+0e,p, ) With0=p;<p.,, i=1,...,7. For the
norm

lp,ll = sup [p;l (4.10)
i=1,..,7
the closure of the union U, D, , is the set
r
{1, esp,) iZjlwz-p,: Pos P; =0, Z=1,---,r}(4.11)

The set (4.11) is a compact subset of » -dimensional
Euclidean space and is identical to D, except for re-
presentation (isometrically isomorphic to D,).

We shall further restrict the interaction U, by requir-
ing that the uniform free energy per volume f(p) which
is a continous function on the interval [0, p,,) be lower
semi-continuous on the closed interval [0, p cp]. Kp,
= + o, then stability of the interaction gives

lim inf f(p) = + ® (4.12)
. P2Pcp
smce
fip) = p(lnp — 1 — Bb)/B. (4.13)

Then f is lower semicontinuous as required. When
the interaction has a finite hard core packing density
P, the free energy f may not satisfy the condition
(4.12). However,if g> Oand p_, > 0 are finite, then
we can define f(p) = + © for p> p2,. In the case that
the interaction has a finite hard core packing density,
we shall restrict our considerations to those which
have a free energy function f satisfying (4.12). By
defining F(p,) = + @ if [p,l = p,,, then F, is lower
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semicontinuous. The importance of the condition
(4. 12) will become clear in what follows.

Proposition 4.1: Let U, (x,,...,x,) be asymptoti-
cally additive. Let {p, ,} be a sequence with p, , €
b, , for each n such that '

PP, 28N®,

Then
lin;Er,n(pr.n) = Fr (p'r)'

Proof: Let the disjoint partition {A;}]; of A, the
boundary regions B, C A,, and the sequence {d} be as
previously defined. We define

P A) = — B1V(A) 1 In (L Lo,

(4.14)

e BUn (%) dx,
n;! i
(4.15)
for each n, wherep, = (p; ,,..., pPyp)andp,, =
n;/V(A;) for i =1,."..,7. So that by applying temper-
edness we obtain

s
E, AP, = pal,Z‘l W} [P} 3 A; — B,) +wn/d3*}, (4.16)
1=
where
w/ = w, — V(B,)/V(A) and
Pin = Pl — V(B)/V(A))1 (4.17)

for i=1,...,7. From the thermodynamic limit for
uniform systems we have

imf, (0} 53 Ay — B)) = Limf,(p; .3 A) = f(p,)

for each i=1,...,7, where p, = (py,...,p,). Now, if
p; = p, for some 7, then

(4.18)

lim igffn(pi.n;Ai) = lim inf f(p’) = + © (4.19)
pr~p;
follows by applying condition (4.12)., Therefore,
lim supF, . (p, ,) < F, (p, ) (4.20)

follows from (4. 16) and (4.9). Note that if [jp, | = Pep
and

lim ir,}fFr,n(Pr,n) =+®

then the result (4. 14) holds. We now show that asym-
ptotic additivity will imply the inequality

(4.21)
Let € > 0 be given; and let the sequences {A},{R},
and {Q,} satisfy the conditions which define an asym-

ptotically additive interaction. Then there exists an
N(¢) such that

X={X,...,. X)X, € A} (i =1,...,7),
¥ (X1,eee,X)< —en}C A" — Qg

lim il’}fFr'n(p,'n) = F(p,).

whenever » > N(€). Now

1 1 -BU,(X)
lim — In (m fA,,_QRe dX) =— (4.22)

L)

since

1.1 -BU(X) 1 V(A)”

n ln{n! fAn_QRe dX} =pb—A)+ - In < ]
(4.23)
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holds for n > N(€). We can write

f o BUn(X) dX,-+dX,

BN
i=1
-BU(X)
- e n Xm“'dX'r
A} ingg
izl
-BU,(X)
+/J N R Max ., X,  (4.24)
1 A; 'n(a™-qp)
i=1

for each #. Now if lim supF, ,(p, ,) < + «©, then
- Bl;;'n(p‘r,n)

eB 04X, ., de)

+Lma (4. 25)

holds for all » sufficiently large. The inequality (4, 25)
gives that

- ﬁFr.n(p'r,n)

1 rf1 -8U, (X) Ben 1
SEIHI:EI(Zi—!fA;Lie ) "dXi>e } +n In2

1

r
=— Bpyt Z}lwif,,(pi’n;Ai) + fe + >-In2 (4. 26)
i

holds for » sufficiently large since
r
U,(X) = Z}l Un,-(Xi) —en
1=
if (X,,...,X,) € [1AYN &, and n > N(e).
i=l
We conclude that

lim infF, .(p,,) = F,(p,) — €. (4.27)
If [p, [ < Py, then the original assumption that lim
supF, (p, ,) < which implied (4. 27) will hold. Now
if llp, Il = p., and lim inf F, (p, ) < o, then

"

. . 1
lim sup — 8F, ,(p, ,) = lim sx;pg In

n
e U, (X)

r 1
x<i:1ni! r my Xm..-dX'r> (428)
n Ai nQE
i=1

holds and (4. 27) follows giving a contradiction. Thus
we conclude that lim inf F, ,(p,) = +  if lp, Il = Pep
and the conclusion (4. 14) holds. Since € > 0 is arbi-
trary, (4. 27) implies (4. 21) if [p, || < p.p and com-
pletes the proof.

The next lemma will complete the proof that the ther-
modynamic limit exists for step potentials of type
(2.1) if the interaction is asymptotically additive. We
define for any n = #»,

Fr= ’g1f{(¢“p7) + F(p,)}. (4.29)
r
Now for each p, € D, of form (2. 13) we have
F(p,) = F,p,) and (¢,,p,)=(¢,,p,), (4. 30)
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where p, = (py,...,pP,), and conversely for each p, in
the set (4.11). Since F, is lower semicontinuous on
the compact set (4, 11), there exists a p} in the set
(4.11) such that

5 = (¢,,0)) + E}) =(¢,,p7) + F(p)s (4.31)

where p} € D, is the step density distribution corres-
ponding to py = (p},...,p7).

Lemma 4.1: For the step potential ¢, let {F},} be
the sequence defined by (4.7)., Then
lim§}, = §F. (4.32)

Proof: First we observe that §' exists and is
finite since
l(¢,,p)] =<ll¢,l

for all p, in set (4.11). Moreover, the point p} must
satisty p*| < p ¢p DY the lower semicontinuity of F, .

(4. 33)

T

Now there exists a sequence {p, ,} withp, A6 €D,
such that p, ,~ p; and

lim{($,, p,,) + F, ,(p,,)] = 5; (4.34)
since
(¢,,p,,) > (®,,p;) and F,,(p,,) = F,(p}
as n — «, But we have

Fn = (0,0, + F,,(0,,) (4. 35)
for all n. Hence

lim S‘;Pffr*,n = §7. (4. 36)

Also since the set (4.11) is sequentially compact there
exists a subsequence {p} ;} of {p},} and a point p,
such that p, , 2 p, as K= «© and

Lim{($,, p} x) + F, x(p} )] = lim inf §¥ . (4.37)
K n
Then

lifl;n[(¢r 7p:,K) + F‘r,K(p:,K)] = (¢,,p,) + F'r(p‘r)’ (4- 38)

and
)= (¢,,p,) + F,(p,) =1lim irn1f S’;‘fn (4. 39)

follows., This ends the proof.
Applying inequality (4.8) and Lemma 4.1 we find that

Lm&(A,n, 8, ¢,) = ;. (4. 40)
To complete the proof of Theorem 2.1 suppose that ¢
is the uniform limit of step potentials ¢, defined on A,
Then the sequence {¢,} is a Cauchy sequence in the
norm (2. 3) and by Lemma 2.1 the bounded sequence
{5} of real numbers is also Cauchy. Hence the se-
quence {F*} has a finite limit which we shall call F*,
Again by Lemma 2.1 it follows that
LmS(A, n, B, ¢) = F*. (4. 41)

The finiteness of §* is guaranteed by the bounds
(1.11) and (1.12). The proof of Theorem 2.1 is now
complete,
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The final section will be concerned with the proof of

Theorems 2.2 and 2, 3. One should observe that in the

proof of Theorem 2.1 we have established Theorem
2.2 in the special case that the external potential is a
step potential.

5. THE THERMODYNAMIC LIMIT

In the section let n = n;, be a fixed integer and A a
fixed domain satisfying the restriction nV(A)1 = p,
with po < p ¢p+ The external potential ¢ is defined on
A and is the uniform limit of a sequence {¢,} of step
potentials also defined on A. The sets of density dis-
tributions D, , S, and D are defined by (2. 14), (2. 15),
and (2. 16), respectively. The convex functional F de-
fined by (2. 10) has an effective domain

domF = {p= 0| F(p) < + w}, (5.1)
where p is a bounded Lebesque measurable function
defined on A. One should note that for most cases
Riemann measure and integration will be enough. We
begin the proof of Theorem 2. 2 with a lower bound on
F. Using Jensen's inequality, which is

FIVIA) L, p(x)dx) < VIA)L , f(p(x))dx, (5.2)
we obtain
F(po) = F(p) (5.3)

for [p|l, = 1, where p, is the constant function on A.
Since [|¢| and ||¢|l, are assumed to be finite, we have

e, o) = ol (5.4)
for all p € D since |p|; = 1,and
(¢, )| = l¢ll1llpll <o (5.5)

for p € L. Then
— li¢ll + F(pg) = Ii)lg{((#,p) + F(p)} = pollelly
+ F(pg) (5.6)

holds and the infimum indicated exists and is finite.
We shall show that

§* = lim{(¢,, 0}) + F(p})] = ;2§{(¢, p)+F(p)}, (5.7

where {p}} is the sequence defined by (4.31). Now
(¢,,0) ™ (¢, p) uniformly for p € D by (5. 4), and

inf{(g, p) + F(p)} =(¢,p7) + F(p3) (5.8)

n

for all » since {p;} < DN S. Thus
inf{(¢, p) + F(p)} =< 5. (5.9)
Dns

It remains to show that
inf{(¢, p) + F(p)} = F*.
DnS

Suppose p € D N S, then there exists a sequence {p}

with p, € D, N S such that p, > p as s = « since D is

the closure of U,D, and S is open. Furthermore,

(¢, p;) ~ (¢, p) and F(p ) = F(p) as s > © since
[(¢,0) — (¢,p)] = ¢l llp — gl

(5.10)

(5.11)
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and F is continuous in D N S. Therefore, there exists
a sequence {p, } with p, € D, N S such that

lim[(¢, p\) + F(p,)] = inf{(¢, p) + F(p)}. (5.12)
A DS

Now {p}} < {p¥} is a subsequence with

(62 0F) + F(p3) = (¢4, p)) + F(p)).

Hence

F* =< lim[(¢, p,) + F(p,)] = inf{(¢, p) + F(p)}
A DnS (

(5.13)

5.14)
follows since every subsequence of a convergent se-

quence has the same limit. This completes the proof
of Theorem 2,2,

Our final result is the proof of Theorem 2.3. It will
be convenient to define

5.(9) = int{(¢, ) + F(p) |lpl, = 1}, (5.15)
where p € domF, It is easy to see that

Lim%i(9,) = 5+ (9) (5.16)
since

[(¢,0) — (&, 0| =lld — o, (5.17)

for all integrable p(x) defined on A with |plj, = 1.
We shall first show that

5% = 5ild,) (5.18)
for every 7, Clearly we have
§* = 5,(0,). (5.19)

Now for each fixed v every € > 0 there is a p(x) de-
fined on A with [|pll; = 1 such that
(¢,,p) + F(p) = 5u(9,) + €. (5.20)

To the p(x) satisfying (5. 20) there corresponds a step
density distribution given by

p,x) = Z}lpiCAi’ (5.21)
where i

p; = V(Ai)‘l‘&p(x)dx (i=1,...,7v). (5.22)
By Jensen's inequality

FOVAN L, o)) = VA [, flp(e))dx (5.29)
for i=1,...,7,we have that

F(p,) = F(p). (5. 24)
But we also have

(¢,,0,) = (¢, P) (5. 25)
so that

(¢,,p,) + Flp,) = Fu(e,) + €. (5. 26)
However, p, € D, implies that

3::5 (¢r’pfr)+F(p7) = 3:*(¢1')+E’ (5‘27)
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and this proves (5. 18) since € > 0 is arbitrary. The
conclusion (2. 19) follows immediately from (5. 16)
and (5. 18) since

5* = im; = UmSs (9,) = Fu(9). (5.28)

The proof of Theorem 2.3 is now complete,

Our results for the infinite system free energy can

be applied to show that the infinite system average
pressure exists for a nonuniform system. Before con-
sidering the grand canonical ensemble we shall need
to restate the preceding Theorem 2.3 in terms of the
free energy per unit volume. We redefine the follow-
ing. Let

(¢,p) = VAYL [, o(x)p(x)dx, (5. 29)

F(p) = V(AL [, Flo(x))dx (5.30)
and

lpll, = WAYL S, |plx)]dx. (5. 31)

Using the above new definitions (5. 29), (5. 30), and
(5. 31), we define

F*po) = int{(¢,p) + F() ol = po}  (5.32)
for 0= p, =< p_,. The functions F and F* also depend
on §3, which we d) not explicitly indicate, Both SF and
BF* are concave functions of 8. Furthermore, F* is
a concave functional of the external potential ¢ and a
convex function of p,. Let p, = A'pg + A”pg, where
X'+ A" =1, Now for every € > 0 there exist p’(x) and
p"(x) on A with |[p’ll; = pg and |p”| = pg such that

€ + NF*(pp) + X'"F*(pf) = (6, M0’ + \"p")
+ NF(p) + N"F(p").  (5.33)

But

F(p) = M'F(p’) + \"F(p"), (5. 34)
where p(x) = X'p’(x) + A"p”(x) by the convexity of F.
Hence

€ + M'F*(pg) + X"F*(pg) = (¢,p) + F(p) = F*(pg)
(5. 35)
since [pll; = ps. Because € > 0 is arbitrary, this
proves that F* is a convex function of p,. We find
that F*(p,) is continuous in [0, p,,) since it is bounded
and convex in every closed subinterval of [0, pcp)-

Let A, be a bounded subset of v-dimensional Eucli -
dean space. Let {(A,¢)} be a sequence obtained from
the initial pair (A, ¢,) by means of any isotropic
expansion., That is

A= al/uAO’ (5. 36)
where limo = + o, and
d(x) = polxy) forx € A, (5.37)

where x = al#x, and x, € Ay, Then V(A) = aV(Ay)
and V(A) — « in the Fisher sense as @ = «, Under
the hypothesis of Theorem 2.3 we have

Covollary 5.1: Let{n(A)} by any sequence of posi-
tive integers such that nV(A)'1 = p, as V(A) 2 in
the Fisher sense. Then
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lim V(A)_]' an(A’ n, B’ ¢) = BF*(pO)

Ao

if0=py = p,pe

(5. 38)

The proof of Corollary 5.1 is essentially a repetition
of the proof of Theorem 2. 3. To obtain (5. 38), we
need only redefine the sets D, , tobe allp, =

(P15 ...,pP,) such that

p;=nV(A)1

for0=n,=n (i=1,...,7)(5.39)

and satisfying
ks
Z]? W;p; = nV(A)L,
1=

where the w; = V(A,)/V(A) (i =1,...,7) are con-
stants. If nV(A)1 = p,, then for every p, satisfying

r
,Ziwipi = pPo (5. 40)
i=
there exists a sequencep, €D, withp,  —p, as

V(A) > ©. With this new definition of the sets D, ,
and with replacement of particle number normaliza-
tion by volume normalization, all previous results re-
main valid and Corollary 5, 1 follows. Indeed, Corol-
lary 5.1 amounts to multiplying the free energy per
particle by p, to obtain the free energy per unit
volume.

6. GRAND CANONICAL ENSEMBLE

In this final section we shall demonstrate that the
grand canonical thermodynamic limit exists when-
ever the canonical limit (5. 38) exists. We redefine
the sequence { ¥} by

— BF(A, m, B, ¢) = V(A) L InQ(A, n, B, ¢), (6.1)
and assume that

Hm&(A, n, B, ¢) = F*(py) (6.2)
whenever nV(A)1 = p, where 0 <p, = Pepe
The grand partition function is

E(A 2,8, 8) = 5 2700, 6,9) (6.9

where z > 0 is the activity and @ (A, 0, 8, ¢) = 1. With
the definition

BP(z,8) = sup {py Inz — BF*(py)} (6.4)

0=p¢=pcyp
for §> 0 and z > 0 we have

Theorem 6.1: Let A — « in the Fisher sense,
Under the assummption (6. 2) we have that

limV(A) ! InE(A, 2, 8, ¢) = BP(z, B),

A—co

(6.5)

where BP(z, 8) given by (6. 4) is a convex function of
Inz and 8 and P(z, B) = 0 is an increasing function of
z.

The proof of Theorem 6.1 is a copy of Ruelle's or
Fisher's proof for uniform systems, and we will not
repeat the details here. However, we shall give a
lemma which allows Ruelle's proof for uniform sys-
tems to be applied.
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Definition 6.1: We say that {F(A, n, 8, ¢)} con-
verges uniformly to F* on a subset K C [O’pcp) if for
every € > 0 there exists an M(¢) such that

| (A, 7, 8, ¢) — FXnV(AYY)| < € (6. 6)

whenever nV(AYl € K and V(A) > M(e).

Lemma 6.1: Let K C [0, p_) be compact. Then
under the assumption (6. 2) the sequence {F(A,n,8,¢)}
converges uniformly to F* on K.

Proof: Suppose that {F} does not satisfy Definition
6.1. Then there exists a sequence {p,} C K, p, =
n, V(A,) L, such that
[F(A,, 7, B, 0) — F*(p,) = €> 0 (6.7)
holds for all k. Since K is compact, it is closed and
bounded and does not include the point Py Further

C. GARROD AND C. SIMMONS

there exists a subsequence {p} of {p,} such that
p; = po where p, € K.

But F*(p;) = F*(p,) by continuity of F*, and
§(A;,n;,8, ) = F*(py), which is a contradiction.
Hence {F} must satisfy Definition 6.1 on K, and the
lemma is proven.

Via lemma 6.1 and the assumption that ||¢| is a finite
constant for all A, Theorem 6.1 follows directly by
applying Ruelle's proof for a uniform system.4

We indicate another representation of the average
pressure p(z, 8),5 which is

P(z,B) = — inf{(¢ — p, p) + F(p)( lelly = oy},

where we write = 81 Inz. The representation (6. 8)
follows from

P(Z,B) =

(6.8)

sup { sup {—(¢ —p,p)— F(p)}}. (6.9)
inoﬁpcp lel]:po

* Work supported in part by the U.S. Atomic Energy Commission.

L M.E. Fisher, Arch. Ratl. Mech, Anal. 17, 377 (1964).

2 D.Ruelle, Slafistical Mechanics. Rigorous Resulls (Benjamin,
New York, 1969).

3 D.Ruelle, Commun. Math. Phys. 18, 127 (1970).
4 See Ref.2,Sec,3.4.5,p. 56.
5 0. Penrose and D. J. Gates, Commun. Math. Phys. 15, 255 (1969).
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It is shown that the onset of instabilities in a finite-sized, optically thin, radiating plasma coincides with the
loss of uniqueness of solutions to the governing nonlinear differential equations. Furthermore, conditions on the
luminosity function are derived for the existence of metastable states of such plasmas with dimensions smaller
than the critical maximum size derived from conventional normal mode stability analysis. The results are
applied to a simple configuration modelling free—free emission from a confined radiating, high-temperature

plasma.

1. INTRODUCTION

The question of stability of optically thin,radiating high
temperature plasmas arises in many contexts, notably
controlled fusion research, astrophysics, plasma diag-
nostics, and the like. In this paper the stability of a
particularly simple configuration is re-examined
from the point of view of existence and uniqueness of
nontrivial solutions to the differential equations go-
verning the steady state temperature distribution
within the plasmas. In addition to recovering the re-
sults of conventional normal mode stability analysis,
we find the conditions necessary for the existence of
metastable solutions which are not discernible from a
conventional approach.

Before continuing, it is important to say something
about physical conditions under which radiation losses
from the plasma are significant. Often physical con-
ditions of interest, be it on the laboratory scale or
the astronomical scale, are such that the collisionless
regime prevails. That is, the size of the object under
observation is smaller than the collision mean free
path. However, the radiative collision cross section
is much smaller than the elastic collision cross sec-
tion, being in the ratio of akT/mc? in hydrogen at a
nonrelativistic temperature 7—here o is the fine
structure constant, # is the Boltzman constant, and
mc? is the electron rest mass. Therefore, on the
time scale in which radiation is observed, the system
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must have undergone many nonradiative collisions,
either with the containing walls (i.e., laboratory plas-
ma) or among the particles themselves, as, say, in a
solar flare. This suggests that whenever nonequili-
brium radiative losses are observed, the time scale
is such that phenomena dependent on collisions, e,g.,
thermal and electrical conductivities, must be expli-
citly accounted for.!

In our search for macroscopic description of systems
far from equilibrium we have inquired into the cri-
teria necessary for the existence of stable steady
states and/or stable quasi-steady states. Of special
significance seems to be the role played by the char-
acteristic dimensions of the radiating plasma: It
appears that if the object is too large it tends to break
up into smaller plasma aggregates—some at lower
mean temperatures and some at higher mean tempera-
tures—such that the largest aggregate does not ex-
ceed, in size, a critical dimension determined by the
plasma parameters. This conjecture is supported

by the following considerations.2—4

First, studies of the stability of radiating plasmas of
indefinite extent show that under certain conditions
small perturbations with wavelengths exceeding a
critical length grow in amplitude.3,4 The existence
of such lower bounds on the wavelengths of unstable
modes suggests an analogy with the relationship be-
tween onset of turbulence and onset of instabilities
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solar flare. This suggests that whenever nonequili-
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is such that phenomena dependent on collisions, e,g.,
thermal and electrical conductivities, must be expli-
citly accounted for.!
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critical length grow in amplitude.3,4 The existence
of such lower bounds on the wavelengths of unstable
modes suggests an analogy with the relationship be-
tween onset of turbulence and onset of instabilities
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in certain types of laminar flow at large Reynolds
numbers.5 Another analogy which comes to mind
seems to be the problem of buckling of beams under
axial compression: For a given stress, buckling occurs
when the beam exceeds a critical length.

Second, an inspection of the entropy equation for a
fluid suggests the existence of a characteristic length.
Thus, for instance, we have the conduction equation
for a fluid at rest:

a_s_ — V kVT (1 1
e ot T 1)
where s is entropy per unit mass, k is the thermal
conductivity, ¢ is the fluid density, and T is the tem-
perature. From dimensional analysis it follows that
the characteristic length L is given here by

2~/ (528
L k/ ( 3 t)'
It is known that inasmuch as the realm of validity of
Eq.(1.1) coincides with that in which the Chapman-
Enskog method is applicable (for that method serves
as the rational basis for Fick's law and, consequently,
as the basis for evaluating «), the process must be
consistent with the principle of least entropy produc-
tion.® This is because the Chapman—-Enskog method
and the principle of least entropy production apply

to systems close to thermal equilibrium. Therefore,
it follows from Eq. (1. 2) that in the steady state the
characteristic length must be maximum subject to
whatever external constraints apply. In particular,

if such constraint are of a purely geometric nature,
L is simply given by the size of the heat conductor
within which the temperature drop occurs.

(1.2)

In Sec. 2 we formulate the mathematical model which
is the object of our study and recover the standard
results of normal mode stability analysis. In Sec. 3
theorems on existence and uniqueness of the solutions
for our model are established. In Sec.4 we apply the
results to the effects of free~free emission on the
stability of a plasma sphere.

2. THE MODEL

We consider a spherical region V(’VO) of radius 7,
(ecm) in which hydrogenic plasma of mean density 7,
{(em™3) is maintained at a high temperature 7. The
size of the region, the temperature, and the density
distributions are taken to be such that the plasma is
transparent to its own radiation. The outer boundary
of the region is assumed to be adiabatically insulated
from the surroundings in the conventional sense of
this concept; that is,
KVT =0 at v =7, (2.1)
where k is the thermal conductivity, here assumed tobe
some given function of T. This outer boundary condi-
tion is picked for the sake of simplicity. Most of the
results obtained hereunder can easily be generalized
to the case of a finite temperature gradient at »,. The
enclosure (i.e., the adiabatic insulation) is assumed
to be diathermanous, i.e., it is transparent to the plas-
ma radiation. Furthermore, the enclosure admits to
the interior some form of energy input which balances
the radiation losses, thereby achieving a steady state.
For instance, the form of input energy could be micro-
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waves, cosmic rays, or any other form consistent with
the properties of the enclosure.

Let Q(n, T) denote the volume emissivity (energy/unit
volume-unit time) of the plasma and S(n, T) the rate
at which the energy from external sources is deposit-
ed in a unit volume of the plasma (z is the particle
density).

Then, in general, for a steady state to exist we have

vkVT =Q(P,T) —S(P, T), (2.2)
where we have eliminated » by using the ideal gas
law nToP (P is the pressure). Integration of Eq.(2.2)
over the region V() together with Eq. (2.1) gives

—kr2VT|,.o= [ (2.3)

Vir
where Tis the solution to Eq.(22.). In the absence of
internal sources of energy, the condition of steady
state requires that the total energy emitted per unit
time from the region under discussion be equal to the
total energy deposited in that volume in a unit time.
This implies that the right-hand side of Eq. (2. 3) must
vanish, from which it follows that the inner boundary
condition is

)dV[Q(T)—S(T)],

k¥2vT =0 at » =20, (2.4)
Because the plasma is in a quiescent state, implicit
in Eq.(2.2) is the isobaric condition. Therefore, to
the extent that the plasma may be approximately treat-

ed as an ideal gas, there follows

nT = const (2.5)
throughout the region within radius 7. Note that un-
less otherwise indicated we assume throughout the
discussion spherical symmetry; therefore,

v--2 and v2 L1 8,,09

or rZ or  or

It follows immediately from Eq.(2.2) thatT =T,,a
constant for 0 < » < 7, is a solution satisfying the
given boundary conditions as long as the equation

QT,) = S(T,) (2.6)

is satisfied.

It is our purpose to investigate the uniqueness of this
solution and its relationship to the problem of stabil-
ity of the radiating plasma as described by our model.
The importance of this question lies in the possibility
that the onset of instability may, in fact, be an aspect
of the lack of uniqueness of solutions to thedifferen-
tial equations representing the given system. This is
somewhat analogous to the bifurcation of the solution
of the Navier~Stokes equations at sufficiently high
Reynolds numbers where onset of turbulence is ex-
pected.” Furthermore, there is the distinct possibility
that there is more than one solution satisfying the given
differential equations and the associated boundary
conditions, which are stable with respect to infinite-
simal perturbations, but not necessarily with respect
to finite amplitude perturbations (metastable states).

Conventionally, the stability of the uniform tempera-
ture distribution is determined as follows. Consider
the time-dependent counterpart of Eq.(2. 2):
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PC, oT
b _ g —

T 3 v«kvT — AT),
where P is the pressure, C, is the specific heat at
constant pressure, and we have let f(T) = Q(T) — S(T).
Let

(2.7

T =T, + 6T(r, 1), (2.8)

where 6T is a small amplitude time and space depen-
dent perturbation of the temperature T, given by Eq.
(2.6). We take 6T to be subject to the same boundary
conditions as are implicit in Eq.(2.2),i.e.,

KT )r2veT(r,1)|, .o = k(L) V6T (r,1)| ., = 0. (2.9)

Substitution of Eq. (2. 8) in Eq. (2. 7) gives

PC, 9¢T

T TE5 (2.10)

= k(T,)V28T — f(T,)oT

c

to first order in 6T. Here, f(T,) = (8f/2T);_, (the
(43

derivative is taken at constant pressure). Let 6T be
an eigenfunction of the operator V2 satisfying the given
boundary conditions, i.e.,
V28T = — A28T. (2.11)
Of course, because of the linearity of Eq.(2.10) an ar-
bitrary 6T may be made up from a superposition of
solutions to Eq.(2. 11) for various values of ». Here,
it suffices tolook at one of these eigensolutions. Thus,
it follows that

PC, 26T

— (2.12
T, ot )

=—[a2«k(T,) + f(T,)]6T.

For luminosity functions f(T) such that f'(T,) > 0,
Eq.(2. 12) indicates that small perturbations will de-
cay in time for all eigenvalues A. On the other hand,
if /(T,) < 0 there is a smallest value of X, say X, de-
fined as

A2 = — F(T)/K(T,) (2.13)
below which the coefficient of 67 on the right-hand
side of Eq.(2. 12) is positive, thereby indicating the
growth of 6T with time. Now, in a spherical enclosure
of radius 7, the lowest eigenvalue for the set of eigen-
functions satisfying the given boundary conditions is
of the order of 1/7,. Therefore, Eq.(21.3) may be
regarded as the condition on the maximum value of
¥y (say rc) for which the isothermal sphere at T = T,
is stable with respect to small perturbations given
the plasma parameters and the heating/cooling me-
chanism. We have thus established a connection be-
tween the smallest wavenumber for the growth of ther-
mal instability? and the largest possible uniform
spherical radiating plasma aggregate, as determined
by normal mode stability analysis.

It should be stressed here that the preceding analysis
is only valid for small perturbations from the assumed
isothermal solution. The form of the space dependent
part of 8T, say 6(#), is

sinrA
(r) OC—;:—

6(r (2.14)

’
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where A is given by the solution of the transcendental
equation

YA = tanrh, (2. 15)
which follows from the condition of Eq.(2.1). There-
fore in the present context, the smallest value of A is

Xyin ™ 4.49/7,. (2.16)
It is useful to compare the characteristic length of
Eq.(2.2) with that of Eq.(1.1). To begin with when 7,
is sufficiently small, minute gradients in temperature
decay in time. They are effectively smoothed out by
the finite thermal conductivity, a result reminiscent
of the corresponding well-known results in Field's
theory of thermal instability in which large wavenum-
ber (large 1) disturbances are quenched by the finite
thermal conductivity.?,3 Thus, 7, may be identified
with L of Eq.(1.2). But here %, has an upper bound 7,
One is then tempted to identify formally — f(T,) with
the entropy production rate, since it takes the place of
gdS/3! in the definition of L [Eq.(1.2)]. This identifi-
cation seems permissible as long as f(T,) < 0. 1t is
as if the emission of radiation tended to decrease the
entropy production rate of the system increased by
the finite heating rate by external sources. Conven-
tional thermodynamic concepts, if used here indis-
criminately, would lead one to conclude that the heat-
ting-emission process is at least partially reversible.
Intuitively, this conclusion seems to be quite wrong,
and it appears that the resolution of this apparent
paradox rests with the relationship between irreversi-
bility and entropy production, under conditions when
both heating and cooling of a system occur far from
thermal equilibrium.6

We proceed now with the study of the existence and
uniqueness of solutions of Eq. (2. 2) subject to the
boundary conditions (2. 1) and (2. 3). In particular, we
will demonstrate in the next section that for spheri-
cal configurations with radii », larger than the cri-
tical radius, given by Eqgs. (2. 13) and (2. 16) there is
no unique solution to our problem. We shall also de-
monstrate that, for », smaller than the critical radius,
there is range of radii for which metastable states
exist.

3. PROPERTIES TO SOLUTIONS OF EQ. (2. 2)

We will investigate the existence, uniqueness, and
qualitative behavior of the solutions over » > 0 of the
differential equation

14 (rzx(T) Ei—ji)zf(T), (3.1)
r2 dr dr
where
f(T) = QT) — S(T) (3.2)
subject to the initial conditions
T|,o=To>0, «T)IL| =0 (3.3)

and under the following assumptions regarding the
functions «(T) and f(T'):

(i) f(T) is defined and bounded analytic in a closed
finite interval I, = [T,,T,], 0< T, <Ty,;
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(ii) f(T) is strictly monotonic in I, i.e., f(T) = 0
there;

(iii) f(T) vanishes for T =T, T, <T, < T,;

(iv) «(T) is a positive function defined over the inter-
val 0 < T < T, where it is analytic except perhaps at
the origin and such that its integral over any closed
interval {0,T], T < T, exists.

Note that the second of the initial conditions (3.3) is
less general than condition (2.4). There may be other
solutions for which condition (2.4) is satisfied with
KdT/dr‘rzO # 0. However, we have excluded them
from our analysis, because initial conditions (3. 3)
suffice to establish criteria for nonuniqueness of the
trivial solution 7'(r) =T,.
Assumption (iv) allows us to simplify notation by
using the function

X(T) = (fOT K(T')dT’)/(fOTC K(T’)dT')

as a new scale of temperature. Clearly, X(T,) =1
and X(T ) has an inverse T(X) which is analytic over
the range I, =[X,X,], where X; =X(T,),X, =
X(T,).

In terms of X, Eq.(3. 1) becomes

X
5 (g o
where
FX) = Tf(T(X)) ,
f Ck(T)dT’
0
and the initial conditions (3. 3) are now

(3.4)

dX —
Xr=0 :XO and ?d? _0-

lv=0 (3.5)
From assumptions (i)-(iii) and the definition of F(X),
we see that this function is analytic and strictly mono-
tonic in 7, and that F(1) = 0, with X, <1 < X,.

It is immediately recognized that Eq. (3. 4) is of the
Emden type.8

Theorvem I: Equation (3. 4) has a unique solution
X(@,X,) satisfying the initial conditions (3.5) for all
X, in the open interval (X;,X;) which is analytic in
v for 0 <sv<7,r > 0.

Proof: Set u = dX/dr and introduce a new indepen-
dent variable £ = Inr sothat — © < { < o for 0 <7
< %, Then, the autonomous system

dr

d_é =7, (3. 6a)
B~ — 2w+ F), (3. 6b)
ax _

i = ur (8. 6¢)

is equivalent to Eq. (3. 4).

Note that the right-hand sides of these three equations
vanish for » = u = 0. Hence, in the associated phase-
space the X-axis is a line of singular points.

Poincaré has shown? that the nature of each of these
singular points (0, 0, X,) can be determined from the
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nature of the eigenvalues of the linear approximation
to Egs. (3. 6a) and (3. 6b) in the vicinity of the point,
namely,

dr

axZ="
du 3.7

These eigenvalues are roots of the characteristic
equation

s2+5-2=0,

i.e., sy, =1, s, = — 2. Poincaré's results then assert
that since these eigenvalues are real with opposite
signs there exist only two trajectories of system
(3.6) going through the point under consideration.
Along one of them the point is approached as £ — «;
it is, therefore, of no interest to us since this corres-
ponds to » = =, It is easily seen by setting ¥ = 0 in
system (3. 6) that this trajectory is a straight line
lying in the plane » = 0 which is an integral surface.

Along the other trajectory the singular point is ap-
proached as £ 2> — » i,e., as ¥ = 0 in agreement with
the requirement of the problem. More precisely, as
shownby Poincaré, the corresponding solution X(7, X))
can be expressed in the form of a series of powers of
e®" = et =7 which has a positive radius of conver-
gence 7. The theorem is thus established.

The determination of the coefficients of the power
series representation ofX(r,Xo) is most easily ob-
tained through the application of the method of unde-
termined coefficients to Eq. (3. 4) where F itself is
represented by its Taylor expansion about X = X,,.

The result is

X(r,Xo)=Xo +8Fgr2 + gg FyFyrd + -, (3.8)

where the subscript “0” refers to the value of the
function at X = X,

Next, we study the boundedness of the solution X (7, Xo)
just obtained.

Theorem II: (1) If F'(X)< 0, then a closed interval
J = [X'1,X'5] € I, can be found such that for all X e J:
(@)X (7, Xy) € J for » > 0 and (b) lim X (r, X,) = 1; more-
r—>
over, dX (r, X,)/dr is bounded for » = 0.

(2) ¥ F/(X)> 0, then dX/dr = 0 for all values of 7 for
which X(r, X,) is defined.

Proof: We will use the fact that the trajectory de-
rivative of the function

¢lu, X) = H(X) — zu? (3.9)
where
X
HX) = fl F(X)dX (3.10)

is never negative along the solutions of system (3. 6).
Indeed, we easily find
do
/23

We determine the configuration of the family of curves
F((po) defined by the equation ¢(u, X) = ¢, = const. It

=2u2 = 0. (3.11)
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is readily seen that the curve I'(0) reduces to the point
u =0, X = 1. The shape of the curves in the neigh-
borhood of this point is obtained from the approxima-
tion

[ FI(X —12 —u?] = ¢, (3.12)
valid for |X — 1] and |#| small, where, as in the fol-
lowing, the subscript “1” refers to the value of the
function at X =1,

First assume that F'(X) < Osothat inparticular F; < 0.
Then, Eq. (3. 12) defines concentric ellipses for nega-
tive values of ¢,. In fact, we now show that all curves
T are closed as long as they lie in the strip X C1y.
Consider the function H(X) as defined by Eq. (3. 10).
Since F(X) decreases monotonically from F(X,) > 0
to F(X,) < 0, we see that H(X) increases from H(X,)
< 0 to its single maximum H(1) =0 and decreases
down to H(X,) < 0 as X goes from X, to X,. It fol-
lows (see Fig. 1) that we can always find an interval
J = [X},X}] €I such that

H(X}) = H(X}) > max(H(X,), HX,)) = ¢,
and that the equation
¢(0,X) = H(X) = ¢,

has exactly two roots X , < X, in J for go< ¢, < 0
where X, = X,(= 1) only for ¢, = 0. If we now write

H(X)
X, X Xnm [ Xy Xa(=X3)
! ! X
5 ‘
FIG.1. Graph of*the function H{X).
X 4
YA ARV AV Y4
X2
(%)
| I'($.)
Vo
%o
Xi
ST x| ST
0 u

FIG. 2. Configuration of the curves I' for F’ < 0,
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the equation of the curves I' in the form
u =+ {2[H(X) — o]}172,

we conclude from the form of the right-hand side that
the corresponding curve T is closed for all values of
¢, such that g, < ¢, < 0 (see Fig. 2).

Now consider the solution X (v, X;) of the problem with
X, C J and choose ¢, = ¢(0,X,). With this particular
choice of ¢, the equation ¢(u,X) = ¢, actually repre-
sents a closed cylinder C(¢,) in the phase space of
system (3. 6) within which the trajectory correspond-
ing to the solution X(7,X) is confined for » > 0.
More precisely, if we designate the set of the 7, u,X
space where ¢(u,X) > ¢, and » > 0 by E(¢,), every
point of the boundary C(¢,) of this set is a point of
ingress© of E(g,) with respect to system (3.6). This
is obvious from inequality (3. 11) at points where

u # 0 since from the foregoing the gradient of ¢ at
such a point is directed towards the inside of C(¢ ).
i.e., into E(¢,). Points where u = 0 are also points

of ingress. Indeed, the series representation of ¢ in
the vicinity of one of these points, (7, 0, X) say, is of
the form

¢ =@(0,X)+ 3 72F2(X)(§ —E)3 + +.-,

where £ =1n?. Clearly, ¢ increases as £ increases
from £ = £,

It follows that X(r,X ) as well as its derivative d X/dr
= u are bounded for » = 0.

Also, since system (3.6) does not have any singular
points inside the cylinder C(gg) for 0 < » < « as is
easily verified, the solution can be continued over
this whole interval. Moreover from (3. 11) we must
have

limu=20

¥—>00
for otherwise, according to (3. 11), ¢ would increase
without bound which is impossible since ¢ < 0 for all
points within C(¢,). Finally, looking at Eq. (3.6) we
see that we must have

11mf(X(7’,X0)) =0

>0

in order for du/df to remain finite. Hence,

lim X (r,X,) = 1,

y— 00

and the first part of the theorem is proved.

We now treat the second part of the theorem, namely,
the case where F/(X) > 0.

Going back to the approximate equation (3. 12) of the
curves I' in the vicinity of the point u = 0, X = 1, we
see that it now represents a family of hyperbolas
centered at this point. Proceeding as in the proof of
part 1 of the theorem it is possible to show that the
curves I'" are as sketched in Fig. 3 where the arrows
indicate the direction of V.

First, assume that X, = X’y withX; < X{; < 1. Re-
ferring to Fig. 3 we see that the trajectory solution
of (3. 8) corresponding to X(7,X,) will be confined
within the cylinder with generatrices parallel to the
¥ axis whose trace on any v = constant plane is made
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up of the arc AB of the curve I'; and of the segment
AB of the line X = X;. Now consider the set of

points of the « = 0 plane where 7 > 0 and X, < X < X,
From Eq. (3. 6) du/dt = rF(X) < 0 on this set which
means that once the solution trajectory has entered
the region u < 0it cannot come back into # > 0through
the plane « = 0. But from Eq. (3. 7) we see that the
solution leaves the initial point # = 7 = 0, X =Xj

in the region u < 0 since F(X) < 0. Hence, we
necessarily have dX/dr < 0 along this solution.

A similar reasoning applied to the case where
1< X, = X} <X, shows that dX/dr is then positive.

The theorem is thus proved.

We now turn our attention to the qualitative behavior
of the solution X(7,X,) assuming that F'(X) < 0 for
Xely.

Theovem III: When F'(X) < 0,the solution
X(r, X,) to Eq. (3. 4) subject to the initial conditions
(3.5) is oscillatory, i.e., has an infinity of zeros over
the whole interval » > 0 as long as X, CJ (cf. Theo-
rem II).

Proof: We introduce the function
Z(r,X,) = r[X(r,Xy) —1]. (3.13)

We then readily find that the function Z is a solution
of the differential equation

BZ | plr,X,) Z = 0, (3.14)
dr2
where
rX) = F(X(r,X,))
P> 2o = X(r,x)—1

subject to the initial conditions

2(0,Xp) =0, 2'(0,Xp) =Xy — 1,

where the prime means differentiation with respect
tor.

Equation (3. 13) is a linear second-order differential
equation to which we will apply Sturm's fundamental
theorem!?! using the fact that the function p(»,X)
has a positive lower bound over the interval » > 0.

Indeed let

px) = — £,

and note that under the assumptions made [i.e., F'(X)
< 0 for X CIy and F(1) = 0]:

(@) F(X)>0 for X, <X<1

(b) lim P(X) =— F'(1) > by !’ Hospital's rule;
x-1

() F(X)<0 for 1<X <X,.

Hence, P(X) > 0 for X C Iy and its minimum value
over this closed interval is certainly positive since
the ratio F(X)/ (X — 1) does not vanish here. If we
denote this minimum value by w2, we, therefore, have

P, Xo) = P[X(r,X,)] > w?
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for r =2 0, since by Theorem II

X0, Xp)e I C Iy =[X1,X,].

The solution Z(», X,) of Eq. (3. 13) can, therefore, be
compared to those of
2y +w2u=0
dar?
which are known to be oscillatory. Sturm's theorem
indicates that Z (r,XO) is more oscillatory than any
solution v(r) of Eq. (3. 15). More precisely, if v(r) has
n zeros within a certain interval r; <7 < r,, then
Z(r,X,) has at least n zeros in the same interval,
Looking back at the definition of Z [Eq. (3. 13)] this
result implies that X (r, Xo) has the same property and
oscillates about X = 1. This completes the proof of
Theorem III. Now we prove

(3. 15)

Theorem 1V: The solution of Eq. (3. 4) subject to
the boundary conditions dX/dr| r-0=4dX /ar| ey, = 0

is not unique for 7 sufficiently large and F(X) < 0.

The proof of this theorem follows from the bounded-
ness of X(r,X,) as well as its oscillating behavior
which implies the existence of minima and maxima
of this function between its successive zeros. When-
ever 7, coincides with an extremum of some X(r, X,,),
the boundary conditions are satisfied by a solution of
Eq. (3.4) other than X = 1. But as X, varies, the
manifold X (7, X,) generates a continuum of locations
along 7 at which dX/ dr = 0. This continuum must
start at a value of 7 (say 7_) no less than that for
which the solution of Eq. (3. 15) satisfies the boundary
conditions of this theorem. This must be so because
of | X, — 1| small enough, the linear approximation to
Eq. (3.4) must be valid. Thus, for any 7, > 7,, Eq.

(3. 4) with the boundary conditions has no unique solu-
tion.

It can be shown that this lack of uniqueness extends
to more general boundary conditions; namely, for a
given 7, > 7, there exist well-defined ranges of
dx/dr| . # 0 for which Eq. (3.4) has more than

one solution.

r=r

It is immediately recognized that the critical radius
7, obtained above is identical with that (see Sec.2) at
which the constant solution X = 1 to Eq.(2.2) becomes

X

/S S LS sey SSSSSS

AT VO V4 7

0 u

FIG. 3. Configuration of the curves I'for F’ > 0,
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unstable with respect to small perturbations. That is
the onset of instability as a function of the size of the
radiating plasma sphere coincides with the presence
of multiplicity of temperature profiles satisfying the
given physical constraints,

We shall now find the conditions for the existence of
a nontrivial solution to Eq. (3. 4) satisfying the boun-
dary conditions of Theorem IV with v, < 7,. We re-
strict ourselves to the case | X, — 1|<< 1, “but not
vanishing,

Theorem V: For | X, — 1]|<< 1, the sign of

ax/dr!, . . is opposite Of the sign ofF"(l) =
2P /X2y ;.
Proof: Lety =X —1, y,= X, — 1, and g(y) =
F(X). Then
dz d
__(1’22) + A2ry = H(y), 3(0) = y,, d‘% r-0=0,
dr (3.16)

where A2 = — dg/dy|y:0,andH(y) =r(g + A%y).

A formal solution of Eq. (3. 16) is

. sinAr sm)\r

=Yo Ty f dr' cosxr'H(y)

cosM’f dr’ sinAxv’H(y) (3.17)

Now to determine the slope of y(r) at » = 7,, recall
that at that point

d (simr
ar\ 7»
Hence,

ay
dar

where K =

Ye
=—K fo dr vH(y) sinr,

(3.18)

[ +A2g0/2/302).

But since g(y) is an analytic function of y near y =0,

g(y)=— A2y + 3y2gf + -+,
where
v =%, _
g0 = &2 y=0,
Therefore,

H(y)=zy%gg +

and up to terms in y2

dy ~ _ 2
A 180K f ar ry? sinnr. (3.19)
Now consider the differential equation
2
d (7'3’) + )tz'ry — a')’yz (3. 20)
dr2
with
d
y(0) =9, and Eyf = 0.
7=0

The solution of Eq. (3.20)y = y(7, a), belonging to the
manifold discussed in Theorems II-IV is an analytic
function of the parameter a. Hence, it can be shown
that for |y ol small enough an approximate solution y
is found if in Eq. (3.17) we set
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H(y)=H

On substituting into Eq. (3.19), we obtain

[yo(sinar/a7)] (3.21)

dy —y3g4K f sin3xr
—_— dv
dr yer, 222 0 ¥
y380K A sinr 3 s1n
A ()

But it follows from the well-known properties of the
Y
function [ dr(sinr)/ 7 that

3ar smr A inr
If ¢ dr < fo dr ——Sl;l ,

where we have taken into account that

7 <M, < 3m/2.

Hence,
%, sind3ar
[ ar 2 >0
and
dy <0 if  gg>o0,
>0 if gi<o,

which concludes the proof of this theorem.

An important consequence of Theorem V is that for
F"(1)> 0 and X, < 1, if X — 1 has only one zero with-
in the interval (0,7, ) X has an extremum at some

%, < 7,. That is, under these conditions there exists
a nontrivial solution of Eq. (3. 4) satisfying the bound-
ary conditions (3. 5) with 7, < 7,, It is important to
note that the existence and properties of this solution
camnot be established from the linearized differential
equation.

Finally, we establish an important property of the
solutions of Eq. (3. 4) satisfying the boundary condi-
tions (3.5) at 7, < 7,.

Theovem VI: For X satisfying the conditions of
Theorem V and F”(1) > 0,

L)
fo drv21nX >0 if F"(1)/a2 >1.

Proof: Note that near X =1, F(X) is an analytic
function of InX. Thus

F(X)=—A2 InX + 3[F"(1) — A2](InX )2 + O[(InX)3].

Further, recall that
)
fo dr r2F(X) = 0.

Hence,
for° dr v2 InX = foy" dr 72 [InX + F(X)/A2]

=— 31 — F1)/a2] f0’° dr ¥2 (InX)2 > 0
up to terms in (InX)2 if
Fr(1)A2 > 1.
Implicit in the results of this section is the conclu-

sion that when F/(X) > 0 the uniqueness of the trivial
solutions to Eq. (3. 4) is guaranteed. This finds its
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correspondence in the stability of the uniform tem-
perature solution for arbitrary size of the plasma
(see Sec. 2), when the luminosity increases with tem-
perature at constant pressure,

4. THE MODEL-—A SPECIAL CASE

The discussion of the preceding section concerned
itself with proving that for a certain type of lumino-
sity function there are no uniquely determined temp-
erature profiles for radiating plasma spheres exceed-
ing a critical size. This critical size was found to
coincide with that beyond which the isothermal plas-
ma sphere becomes unstable with respect to small
perturbations. Further, we have established under
certain conditions the existence of nontrivial solu-
tions for spheres with radii smaller than the critical
radius 7,. We have not been able, as yet, to establish
analytically the minimum radius# , above which these
solutions exist. However, in special cases we canesta-
blish this limiting value of », by numerical integra-
tion of the given differential equation for a sufficient-
ly broad range of initial conditions.

For the purpose of this investigation we have assum-
ed that 7, is sufficiently high so that in the interval
I, =|Ty, T,] radiation is principally due to free-free
emission, i.e.,

Q(T)= An2TV2 = AP2/T3/2, (4.1)

where A is a constant. Energy deposition per unit
volume at a given point was taken to be proportional
to the density at that point, i.e.,

S(T) = Bn = BP/T, (4.2)

where B is a constant. Further, we have assumed
that the thermal conductivity is approximately that
for a quiescent plasma,i.e.,

K(T) = Ko T5/2 4.3)
with k, a constant (we ignore here the logarithmic

temperature dependence of «;). The constant tem-
perature solution 7, is found to be

T, = (B/An)2 = (AP2/B). 4. 4)

The luminosity function f(7T) is

AT) = (AP2/T3/2) — (BP/T) (4.5)
and
2
= Lo 3ARLBR o por 1< (3ARY
(4. 6)
At T =T,,we have
fI(T,)=— 3 (AP2/TS5/2) = — Q(T,)/2T,. .7

The critical eigenvalue X, at which instabilities arise

is then
(7 APp2 Q7
f( C) ( c) (l, )

A2 = = = .
¢ k(T,) 26,75 2T.k(T,)

In terms of the following nondimensional variables,

X =(T/T))/2, (4.92)
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p=m, 1. (4. 9b)
Equation (2. 2) becomes

p2 % p2 %-g = X-3/7 — X-2/7 = F(X), (4.10)

and boundary conditions (2. 1) and (2. 4) become

dx| _dx

= 8L =0
dp p=0  dp pep, ’

where p, = %, V7. We note that F'(1) = 12/49 > 0.
We have integrated numerically this equation starting
from a point X(p = 0) < 1 and found that as expected
from Theorem V of the previous section dX/dp = 0
at some p, < p,, where p, is the nondimensional dis-
tance variable corresponding to the smallest root of
Eq. (2.15) (see Fig.4). It is noteworthy that the inter-
nal energy of the nontrivial solution is identical to
that for the uniform temperature (trivial) solution.
This follows immediately from the isobaric condi-
tions satisfied by both solutions and the fact that at
one point inside the sphere of radius 7, < 7, the non-
uniform temperature profile crosses the value T =
T (or X =1).

From the definition of free energy!2 in a differential
volume dV, the incremental free energy d5 is given
by

d¥ = €ydN + [P(InP — 1 — &) — CPPInT] av,

where €, and £ are constants, and dN is the number
of particles within the volume dV. Hence, the free
energy within the volume of a sphere with radius ¥,
is

§=C,P [ InTdV+ e,N+ PV(InP— 1 — ).

V(ry)

For the special case where T= T, forall7, 0 <7 <
%o [i.e., the trivial solution for Eq. (2.2)], we have

§, = $(T = T,) = [ — C,PInT, + P(InP — 1 — £)]

c

X V + €N,
|2 T T T T T T
/” -
> !
I
= ! '
8 X(p=0)=0 / : | | —
P [
VX#0 . : :
[
6 (b) x(,,:o):o_z,g N : 4
|
A
i
4 - L
| |
[

// N |
2, i .
/ . |
/ p7/5 %min: |% A
0 I I L TP |
0 2 4 6 8 10 12

FIG. 4. Typical solutions of Eq. (4.10); a) the trivial solution,
b) nontrivial solution X, = 0. 3,and c¢) nontrivial solution Xy = 0.
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where we have taken into account that the total num-
ber of particles N and the pressure P within the
volume ¥V are the same for the trivial and nontrivial
solutions of Eq. (2. 2). The difference between the
free energies of the two configurations is
AF=F -5, =~-C,P

dvInT/T,.  (4.11)

V(%)

Hence, for the model under discussion

AF <0
if
3o dp p2 Inx > 0.
But by Theorem VI of the previous section, this

integral is indeed positive because in the present
case

—F"1)Y/F'(1)y=%2 > 1.

(Note this integral is positive for all luminosity
functions of the form F(X) =X"*— X8 a,8> 0.)

It follows from the preceding that if we take a dec-
rease in free energy as evidence of increase in rela-
tive stability of a given configuration, especially with
respect to finite disturbances, then the nontrivial
(nonuniform) solution to Eq. (2. 2) subject to given
boundary conditions, is more stable than the uniform
solution. The latter solution may then be viewed as a
metastable state.

On the other hand if AT > 0, then it is the nonuniform
solution which may be viewed as a metastable state.
This follows from the observation that, as shown
below, granting the existence of nonuniform tempera-
ture profiles for 7, < 7, those profiles are stable
with respect to small perturbations.

Let the nondimensional time variable be
T = [1Q(T,)/2PC,] .

[The characteristic time PCp/ Q(T,) may be regarded
as the time during which a significant amount of the
internal plasma energy is lost by radiation.] Then
Eq. (2.7) becomes

13X _ vex — F(x),

X3+ 4.12)

where now
o d d
v2 = 2 .
o ;) p &’
X, p, and F have previously been defined. Let X be a
nonuniform solution of the problem

v2X - FX)=0 w‘c‘ o™ vz—(‘ o = 0.

Consider a perturbed solution
X=X+ 6X,
where

6X = sinp/p for na/x<p < {[(n + V7]/A},
n = some integer, = 0 elsewhere.

For the purpose of the present discussion we shall
consider the profile X to be stable if for the selected
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6X, the right-hand side of Eq. (4. 12) is negative given

86X > 0 (and positive given 86X < 0) for it indicates

that at least initially the perturbation decreases

(increases) with time. To first order in 6X we obtain
0X

=5 =— X[A2 + F'X)]oX.

This will satisfy our stability criterion if

@.13)

A2 =F'(X)> 0.
Now we note that

X(0)<X(p) for 0<p=<p,

and, therefore,
A2 + F'(X) 2 A2 + F[X(0)]

as long as X < (3/2) [cf. Eq. (4. 6)]; hence, the inequa-
lity will be satisfied if

AZ > — F[X(0)] > —F'(1) ~ 1/p2,

where p, is the nondimensional critical radius. There-
fore, we require that the wavelength of the pertur-
bation be smaller than p,. But, since the largest
wavelength excitable in a cavity of radius p, is com-
parable to gy, and by hypothesis po< p,, the inequa-
lity always appears to be satisfied. Hence, the non-
uniform solutions appear to be stable with respect to
small perturbations.

It is of some interest that the free—free emission
from a plasma with the nonuniform temperature pro-
file is somewhat harder than would be the case with
a uniform temperature profile. This follows from
the fact that the former profile has a region with
T>T (X >1)

The proof of Theorem VI is restricted to initial
values of 7 only a little less than 7,. We have nume-
rically investigated the behavior of the solution of Eq.
(4.10) in the limit of very small initial temperatures
Xy < 1). The limiting behavior for X, = 0 is shown
in Fig. 4. It can be shown that near the origin X ~
p7/5, It should be noted that the minimum value of

Pos Pomin = 9. 687, is about 80% of the value of p,.
Moreover, numerical integration shows that even in
this limiting case the integral

J? dp p? 1nX >0

as it appears to be for all the cases intermediate
between X, = 1 and X, = 0.

We recognize that the physical significance of our
model is lost before X, reaches zero; however, it
must be borne in mind that only one order of magni-
tude change in the temperature T corresponds to
three and a half orders of magnitude change in the
variable X, so that a physically realistic range of
temperatures may correspond to most of the values
of X in the interval (0, 1). It should perhaps be men-
tioned here that because of the isobaric assumption,
if the drop in temperature in the interior of the
radiating sphere is large enough, the particle density
may rise to the point where the underlying assump-
tion of optical thinness is no longer valid. In addition,
on an astronomical scale, the density may rise to the
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point where self-gravitation effects can no longer be
neglected.

Finally, we point out the similarity between phase
transitions, in general, and the possibility of transi-
tions from the uniform to the nonuniform solutions.
When the radius of the radiating plasma sphere is
close to that corresponding to p,,;,, small variations
in the flux of the incoming radiation may cause that
radius to be actually larger (or smaller) than the
corresponding 7y ; ,, thus inducing transitions from
the nonuniform (uniform) temperature profile to the
uniform (nonuniform) one.

5. CONCLUDING REMARKS

We have shown that under certain physically reali-
zable conditions for finite-sized radiating plasmas,
there may exist alternative stable and metastable
configurations satisfying the given boundary condi-
tions. Their existence cannot be established from the
linearized differential equations. We have presented
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some simple tests for the presence and relative sta-
bility of such solutions. Applications of these results
to a simple model of uniformly heated confined plas-
ma show that for a range of parameters the emitted
radiation by a configuration stable to finite distur-
bances is harder than would be predicted on the
basis of normal mode analysis. To the extent that for
a given total energy emitted, the emission of fewer
photons with higher energies represents a lower en-
tropy production rate, it is possible that the lower
free-energy configurations discovered by us belong
to the category of “dissipative structures” discussed
by Glansdorff and Prigogine.8 This point of view will
be explored elsewhere.
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We diagonalize a many-fermion Hamiltonian consisting of terms quadratic as well as quartic in the field opera-
tors. A dual spectrum of eigenstates is an interesting result. We also derive a formula for obtaining the free

energy at finite temperature.
I. INTRODUCTION

The Hubbard model of interacting electrons on a

linear chain,
N1

Hyup = — € Z>1 (cjtl Ciio + cjtlc cjo)
iz

o=£1/2
R (1)
+U Zl)(an —2)(n;, —%), where n;; = c} ¢,

]:
was given an ingenious solution by Lieb and Wul who
obtained the ground state, and later by others2 who
found the elementary excitations. The complete set
of eigenstates has not yet been determined nor has
the statistical mechanics, although numerical calcul-
ations3,4 on finite systems (N = 6) has revealed
many interesting features such as level crossings and
dual excitation spectra. These are totally absent in
the approximate RPA solution of (1), and such struc-
ture is lacking in the exactly soluble, relativistic
model of interacting electrons.5 It is therefore of
interest to discuss the predictions of a new model, a
modification of (1), which we have been able to solve
exactly for arbitrary N, €,and U. We obtain and

classify the eigenstates and eigenvalues, and reduce
the calculation of the free energy to the solution of an
implicit equation. One of our results is a two-fold
degeneracy of the ground state, which is antiferro-
magnetically ordered. A dual excifation spectrum is
also a feature of this model.

IO. MODEL HAMILTONIAN
Like (1), the exactly soluble Hamiltonian is a combin-
ation of quadratic and quartic terms:

€
=7 2 (Cjc - cjt)) (cj+1o + Cjt]_o)
N 1
+ UZJl(an —2)(n—32). (2
j=
The c's are a complete set of anticommuting operators.

An important (and anomalous) operator in the above
is
Z((’}'O G+t C;; C;‘tla)’ (3)

which causes charges to be created or destroyed in
pairs (as in the BCS theory of superconductivity). It
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obtained the ground state, and later by others2 who
found the elementary excitations. The complete set
of eigenstates has not yet been determined nor has
the statistical mechanics, although numerical calcul-
ations3,4 on finite systems (N = 6) has revealed
many interesting features such as level crossings and
dual excitation spectra. These are totally absent in
the approximate RPA solution of (1), and such struc-
ture is lacking in the exactly soluble, relativistic
model of interacting electrons.5 It is therefore of
interest to discuss the predictions of a new model, a
modification of (1), which we have been able to solve
exactly for arbitrary N, €,and U. We obtain and

classify the eigenstates and eigenvalues, and reduce
the calculation of the free energy to the solution of an
implicit equation. One of our results is a two-fold
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also a feature of this model.
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is evident that the current density operator j has to
be suitably modified to take this into account in order
to satisfy an equation of continuity. These consider-
ations have also suggested to us that one should seek
an analogous modification of the current operator in
the BCS theory, as we discuss elsewhere,6 In the pre-
sent work the anomalous terms (3) are introduced
merely as a convenience to allow a solution of the
problem. This device first proved useful in the exact
solution of one and two “magnetic” impurity atoms

in a three-dimensional nonmagnetic metal host,? al-
though the subsequent calculations and results, in
these problems, have little in common with the pre-
sent work.

Our first step in the manipulation of ¥ is a Jordan—
Wigner transformation to pseudospin matrices T;
and §;, defined via

moZ oy mi( El Ryt * E."mlr)
S=cpe "7, Tr=cge T ()
with similar equations relating S* and 7* to the ¢*'s,
Insertion into (2) yields

¥ =— €2(S*S%
j

Fo T TFTE) + UJZ;Sijz' (5)

It is now advantageous to introduce a new set of spin
matrices, the E* and J#, in terms of which the origi-
nal spin vectors are
(87,87,85) = ], 2d]) P}, 2J7P)),
(zj’ ij’ TJZ) = (- Zszij’ ZPij;‘C’ ij)‘ (62)
The inverse of these relations is useful to record:
0097, 07) = (8], 28775, 281,
x
(P}, P, P}y = (T],2S] T}, — 25 T}). (6b)

[Note that our matrices are all normalized to spin 3,
such that, e.g., (B*)2 = 3.] When this is substituted in-
to X, there resufts

= — LU AR P+ D+ U ()
J i

. EIGENVALUES

Now we note that the Pf are the constants of the mo-
tion and can therefore ‘each be taken to be either + 3
or —+. We denote this the “P-eigenvalue.”

Inspection of (7) shows that if neighboring sites have
opposite P-eigenvalues, the connection via thed J %4
bond becomes broken. Conversely, if they have simi-
lar P-eigenvalues, the bond strength is

—2¢ J]?‘J]?il

regardless of whether the P-eigenvalue is +3. Thus
in any eigenstate the chain of N atoms is partioned
into a number of noninteracting “molecules” of alter-
nating P-eigenvalue. The number of such molecules
can be as small as 1, which is indeed the case of the
ground state, consisting of a single molecule of N
atoms all of which belong to a common ei%envalue of
Pf. As,however, this eigenvalue can be +3, the
ground state is a doublet regardless of the relative
magnitudes of ¢ and U. At the opposite extreme, the
largest number of molecules is N, each consisting
of a single site.
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We now solve for the eigenvalue spectrum of any one
such molecule, which, we shall assume, extends from
a site A (A = 1) to a site B (A < B = N). The appli-
cable part of JCis

B+l B
JCAB=—26§J;J;51+§U };J;. (8)

The eigenvalues are symmetric in ¢, therefore we
restrict the following to € = 0. This X is reduced to
quadrature by a transformation to fermions, the in-
verse of (4). Define the set of anticommuting opera-
tors a ;i

oz i
— J- s
a;=Jye 9)
and similar Hermitian conjugates, such that
B-1
1
Hap=z€ AE (aj - aj*) (aj+1 + ajtl)

B
+3 UZ (apa, ~4). (0)
A

The diagonalization of precisely this quadratic form
has been previously studied in connection with the
“Heisenberg~Ising model”,8 and it is straightforward
to “plagiarize” these old results:

The diagonal form of ¥, ; becomes

Hup =§)Ak(ak*ak——§), (11)
where

A= [(U/2 — €)2 + 2Ue sin2k/2]1/2 (12a)
and the k's are the roots of

sink(B — A + 2)/sink(B —A + 1) = 2¢/U, (12b)
i.e.,

A, = | sink/sink(B —A + 1)|(U/2). (12¢)
By (11),the ground-state energy is

B =—12 A (120

2

Because of obvious symmetry in 3, we have taken

€ = 0 in these relations without loss of generality.
For 0 < € < U/2 there are B —A + 1 real roots, ex-
hausting the normal modes. For ¢ > U/2,however,
there are only B — A real roots but, in addition, an
imaginary one representing a “surface” state. De-~
noting it k, = iv,one finds.8

sinh(B — A + 2)v/sinh(B — A + 1)v = 2¢/U,
Ay = | sinho/sinhw(B — A + 1)1(U/2). (13)

It is interesting to note that when B —A » w0, A, — 0
for all U < 2le|.

IVv. THERMODYNAMICS
The partition function of an /-atom molecule is

z2(f) = 2 cosh} BA,, B =1/kT, (14)
where the set of ££'s and A,'s are given in the pre-
ceding equations,with /=B —A + 1. If we decom-
pose the chain of N atoms into molecules of lengths
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L,,4y,+ -, subject to the constraint
Zfi =N,
then the grand partition function is Z = exp(—gF),

where F = free energy. This is given in terms of the
individual molecules as

zZ=2 I;Iz(ﬁi).

(15)

(16)

The sum is over all possible decompositions. We now
discuss a method for calculating this in the thermo-
dynamic limit (N — ).

Let

z2(£) = N o), 17

where A includes the extensive contribution,and 4)(,@ )
the influence of finite ends,of a molecule £ units in
length. Thus, we define A by

logh =1lim £-1logz(/) = 771 fon de log

{0

x {2 cosh3 B[(U/2 — €)2 + 2Ue sin26/2]V2}. (17'a)
We have
o(£) = log[z(4)¢] (17'v)
an intensive quantity,i.e.,
lim /-1¢(¢) = 0. (17'¢)

{ a0

The calculation of Z reduces to that of an auxiliary
quantity G, defined via:

E¢(li)

Z=\}e' = MG(N), (18)
G obeys an iterative equation:
G(N) = e?WG(N — 1) + @GN —2) + -+-. (19)

In the thermodynamic limit (N — ©) we set G(N) = g™V,
with g > 1,and

1= i e¢(l)g‘[
=1

(20)

follows from (19), and is the implicit equation deter-
mining Z.

If ¢(£) were constant for £ = 1,then (20) is solved by

l=e?2) gt =e?/(g—1),
¢=1

i.e.,
g=1+e? (21a)
I ¢(f) = ¢(1) for £ =1 and ¢(2) for £ = 2, then
1 = e¢(1)g-1 + e¢(2)g—1 i g—t
=1
= e¢(1)g’1 + e¢(2)/g(g — 1),
ie., g=%(1+e¢W)
+[5(1 + e?2W)2 + (e9@ — o M)]1/2,  (21b)

It is easy to see if ¢p(¢) becomes constant after r
steps, the solution of an vth degree equation yields g,
and hence G and Z. K ¢ is not really constant at
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£ > r,corrections may be obtained by iteration. It
is believed that because the ¢(/) are analytic func-
tions of the temperature,the solution g and hence Z
must be analytic as well, so that there is no phase
transition at finite 7.

V. ELEMENTARY EXCITATION

Assuming the ground state to be a single molecule of
length N,belonging to either P-eigenvalue +3,the
spectra of elementary excitations are twofold: (A)

the set of internal excitations,of energy A,, and (B)
the (quite distinct) breaking up of the chain into smal-
ler molecules which must,of course,belong to alter-
nating P-eigenvalues. Both type excitations are
counted in the calculation of Z in the previous chap-
ter. They must be treated distinctly in a study of the
dynamics of our model.

A. Internal Excitations
Consider Eqgs.(11) and (12) withB —A =N —1 - .
We observe that for |e| =<3 U the spectrum of ele-

mentary excitations represents the addition of a
quasiparticle of energy:

A, = [(U/2 — €)? + 2Ue sin2k/2]1/2 (22)

with 2 ranging over closely spaced eigenvalues from
0 to =.

When |e| >3 U then is also a bound state of energy
Ag = 0.

B. External Excitations

For lack of a better name we denote “external exci-
tations” the process of creating an additional mole-
cule.

As we are principally concerned with excitations
connecting to the ground state,the problem reduces to
consideration of the energy to break up the original
ground state molecule extending from (1 to N) into
three: (1to A —1),(A to B),and (B + 1 to N). It may
be assumed that A and N —B both >> 1 and that B — A
= f — 1 << N. We define the ground state energy of a
molecule of length L to be E (L), and the ground state
of the same molecule with the two ends connected
(periodic boundary conditions?) Eg,(L), with Ey,(L)

= Ey(L) and E,(L) — E,(L) = O(1) for obvious rea-
sons. Then the energy A({) to break the initial mole-
cule into 3 is calculable as follows:

Al) =Eof) + [Eg,(N — L) — Eq,(N)]
+[EoN —£) —Eq,(N—4L)], (23)
where (N > x),
Eqp(N —4£) = Eq,(N) = (£/2n) [ déA,
=U/my(U/2 + leNEQUIel/[U/2 + |e|]2). (24)
Here E(x) is the complete elliptic integral. Also,
Eo(N—4) —E,,(N—£) =5[lU/2 + |e]|

—|u/2 —leli] + (1/21r)f(:r da@(e)-aglz—e, (25)

where & is defined through £ = 6 + (1/L)®(6), where
k satisfied Eq.(12) withB —A + 1= L and 6 =
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(ﬂn/L), (n=0,1,-

oo+ o)+ 0] _sin(s + ) _ 2

L —1),and L - ®. Thus

1 — (26)
sin [(9 + —«1:) L:] sing v’
L
which has the solution
®(6) = cot"1[(2¢/U ~— cosh)/sind]. (27

In the special limit,2¢ = U, the A({) becomes

AW) =U[3 —1/1 — %(csex — 1/x)],

where x = n/(4{ + 2). For 2¢ > U, using 6 =

mn/(L + 1) in Eq.(2b), we get &(6) for Eq.(25) by re-
placing 2¢/U by U/2¢ in Eq.(27).

VI. MATRIX ELEMENTS AND CORRELATION
FUNCTIONS

Here we are concerned with some typical ground
state correlations and some matrix elements to ex-
cited states. The ground state of a linear chain
(length N — ) is at least twofold degenerate: Aside
from the two choices of P-eigenvalue there exists,
for U < 2|e|,the option of exciting or not exciting
the surface state of Eq.(13) which has energy A, = 0.
Let us label the set of possible ground states by |a).

Then
(ozlnj1 o) =% + 2(a|szij|a) =3

and . (28)
(aln“ la) =2 + <a|Pj"|a =3.

Thus 0f0j, correlations are nonexistent for all p + 0:

However,the nearest-neighbor transverse correla-
tions are

(C!'C? ]Jl +1 ]+11'a)

=—(a|[ —-Z)P +zPy)]
X [y 2)( 5 +iP)))] @)
=— i{al(J, J; — 2N, ]+1 z)la). (30)

This can easily be calculated by (9),(10) and a plane
wave expansion related to use of periodic boundary
conditions (aJ =1/N12%, etk EJck) One can see
that (30) is negative, and concludes that nearest-
neighbor sites within a molecule are antiferromag-
netically correlated.

This also allows us to estimate the spin correlation
of adjacent ends of two molecules. If j is at the end
of one molecule (has P-eigenvalue P#) and j + 1 at
the beginning of the next P-eigenvalue P, = —Pf )s
then the expectation value (30) becomes mtrms1ca11y
positive. It is therefore tempting to interpret the

D. C. MATTIS AND S. B. NAM

molecules as antiferromagnetic domains, and the
break in P-eigenvalue between j and j + 1 as the do-
main wall. However,the true picture must be some-
what more complex than this, as we see when ex-
amining matrix elements to excited states. The

fundamental charge density operator n i Ty, has
matrix element:
<'y|n“ + nul“) = 2<Y|(Jiz + é)Pi"la) ’ (31)

where | @) is one of the ground states. This vani-
shes unless (yl is an “external” elementary excited
state,having the same P-eigenvalue as |a) for

j + ¢ and opposite P-eigenvalue at ¢. The energy of
such a state relative to the ground state, A(1),has
already been calculated in a previous chapter.

Similarly,a magnetic field (in the z direction) in-
volves matrix elements

(ylmy —ngla) = 2(y|J7 — 5)PF|o) (32)
which connect to the same “external” excited states
{y| as the above.

VII. CONCLUSION

We have reduced to quadrature a many-body prob-
lem of fermions with spin, constrained to a linear
chain. The problem was first brought to the form,
Eq.(7),in which the nonlinear terms (w1th BZ) could
be characterized by quantum numbers +3 . The re-
mainder, Eq. (8), could be solved by transforming to
a quadratic form in spinless fermions.

We found the ground state to be a single molecule.
For U > 2|¢| the ground state is twofold degenerate,
such as an antiferromagnetic Ising chain, and has two
Néel ground states (differing by one atomic transla-
tion). However,when U < 2le] the ground state is
fourfold degenerate. There is a “phase transition”
for T =0 at U = 2|e|. We obtain an implicit expres-
sion for the partition function and estimate for fixed
U and ¢, that there is no phase transition when the
temperature T is varied,

Finally, we find that external perturbations (magnetic
or electric fields) connect only to that part of the
excitation spectrum we have labelled “external” ex-
citations. Internal excitations (A,),in which all Pz-
eigenvalues are conserved, are therefore not access~
ible to probing by external forces even though they
contribute to the thermodynamic properties. Thus at
U = 2|e| the model has an absorption threshold at
finite energy,i.e.,an “optical” gap, even though the
continuous spectrum of internal elementary excita-
tions extends down to A, = 0.

The dual excitation spectrum suggests that a solu-
tion of the free energy equations (14)—(21) will yield
two maxima in the specific heat,a feature which has
already been discovered in numerical computation?
of the properties of finite Hubbard-model chains

(N < 6).
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A number of sufficient conditions for the existence of unbounded solutions of two and three coupled mode equa-
tions are obtained when some modes are linearly unstable and all initial amplitudes are arbitrarily small. The
difficulty of obtaining sufficient conditions for boundedness of all solutions is discussed, and only two such con-
ditions are obtained. In certain cases it is proved that the unbounded solutions are not more rapid than expo-
nential, whereas they can be shown to be singular (“explosive”) in other cases.

1. INTRODUCTION

In recent years there has been increasing interest in
the properties of the solutions of nonlinear equations
which describe the coupling of linear modes1~3 par-
ticularly in those cases where the linear modes are
unstable. A question of primary interest is whether
the nonlinear mode coupling can produce bounded
solutions when the linear modes are unstable. The
mathematical problem of establishing the bounded-
ness of all solutions of a system of ordinary differen-
tial equation is one of great difficulty. At present
there is apparently very few known methods for
establishing boundedness of all solutions?, the most
common methods relying on extensions of Liapunov's
method used in establishing stability. The compli-
mentary problem of establishing sufficient conditions
under which some solutions are unbounded is, at least
in principle, considerably simpler. While this infor-
mation does not indicate when there may be only
bounded solutions, it at least establishes conditions
under which the mode coupling cannot stabilize the
linear instability. It should be emphasized that the
sufficient conditions of interest are those which hold
for initial states arbitrarily near the stationary point
[e.g.,271x,(0)[2 < € in Eq. (1) below].

To investigate this problem, we will first consider a
system of equations describing the interactions be-
tween three linear modes, Another system involving
two coupled modes will be discussed in Sec. 4. The
three-mode equations are

. *
Xy = Q%) + ByXg¥xy,
. *
Ko = Qpxy + Byxaxy, 1)

. *
Xz = Qgx3 + Bax Xy,

where all quantities are complex, the dot refers to a
time derivative, and the asterisk indicates the com-
plex conjugate. These equations have been widely
studied!:3 under a variety of special assumptions
concerning the complex coefficients (a,, 8,). In Sec.
2 we will also make use of one of the common as-
sumptions concerning the coefficients g, in order to
obtain certain sufficient conditions for the existence
of unbounded solutions. [Solutions of (1) are called
bounded if, for all ¢ = 0, 2;|x,(t)|2 = M < w for
some M.] In this case it will be shown that there is
an interesting geometric interpretation which also
clearly indicates the difficulty involved in establish-
ing the boundedness of all solutions. The general
case of arbitrary (a,, 8,) will be taken up in Sec. 3,

where a number of more abstract conditions for
unbounded solutions will be obtained. In Sec. 4 these
results will be compared with those obtained for two
coupled modes. In addition the existence of singular
solutions will be established under certain conditions.

As mentioned above, the primary interest in Eq. (1)

is when the linear modes are unstable. If we set
o, =iw, + vy, (W, yereal) (2)

then this means that at least one of the y, is positive.

Unless noted otherwise, it will be assumed in the
following that this is the case.

2. THE CASE B, = p,e’¢

In this section we will assume that the coefficients
B, in Eq. (1) are of the form

By = pre'®  (py, ¢:real). (3)
Note that all ¢ are the same, but the sign of p, is

not restricted to being positive. In this case one
readily obtains from Eq. (1)

d .
ar (pj.nk - pknj) = 2(Ykpjnk - '}fjpknj)y Sk =12, 3’( )
4

where n, = [x,]2. A simple but useful lemma which
can be applied here, and to other cases with various
generalizations, is the following:

Lemma: Consider the equation

HFO) + G20)] = aF (1) + bG2(0), (5)

where @ > 0 and b are constants and F(t), G{¢) are
arbitrary functions. If there exists initial states such
that

(b —a)F(0)+ G2(0)]> 0
then, for these states,

|F(t) + G2(t)] = | F(0) + G2(0)]e ¢, t=0.
The proof is elementary. If b > a, then aF + bG2 >
a(F + G2), and the result follows for the indicated
initial states. If b < a, then the same reasoning holds
for — F — G2, Note that if F(0) can have arbitrary
sign, then the condition (b — a){F(0) + G2(0)]> 0 can
always be satisfied. In this case the conclusion holds
for any constant b (not necessarily positive).

J. Math. Phys., Vol. 13, No. 8, August 1972



EXACTLY SOLUBLE MODEL OF INTERACTING ELECTRONS

Mattis Mathemalical Physics in One Dimension (Academic, New
York, 1966).

6 D.Mattis and S. B. Nam (to be published).

7 D.Mattis, Phys. Rev. Letters 27,1356 (1971).

1189

8 E.Lieb, T.Schultz, and D. Mattis, Ann. Phys. (N.Y.) 16, 407 (1961),
esp. pp. 439 and ff.
9 Le., kL = £(2m)X integer.

Unbounded Solutions of Coupled Mode Equations*
E. Atlee Jackson

Deparlmen! of Physics and Coovdinaled Science Laboralovy, Universily of lllinois, Urbana, lllinois
(Received 29 February 1972)

A number of sufficient conditions for the existence of unbounded solutions of two and three coupled mode equa-
tions are obtained when some modes are linearly unstable and all initial amplitudes are arbitrarily small. The
difficulty of obtaining sufficient conditions for boundedness of all solutions is discussed, and only two such con-
ditions are obtained. In certain cases it is proved that the unbounded solutions are not more rapid than expo-
nential, whereas they can be shown to be singular (“explosive”) in other cases.

1. INTRODUCTION

In recent years there has been increasing interest in
the properties of the solutions of nonlinear equations
which describe the coupling of linear modes1~3 par-
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unstable. A question of primary interest is whether
the nonlinear mode coupling can produce bounded
solutions when the linear modes are unstable. The
mathematical problem of establishing the bounded-
ness of all solutions of a system of ordinary differen-
tial equation is one of great difficulty. At present
there is apparently very few known methods for
establishing boundedness of all solutions?, the most
common methods relying on extensions of Liapunov's
method used in establishing stability. The compli-
mentary problem of establishing sufficient conditions
under which some solutions are unbounded is, at least
in principle, considerably simpler. While this infor-
mation does not indicate when there may be only
bounded solutions, it at least establishes conditions
under which the mode coupling cannot stabilize the
linear instability. It should be emphasized that the
sufficient conditions of interest are those which hold
for initial states arbitrarily near the stationary point
[e.g.,271x,(0)[2 < € in Eq. (1) below].

To investigate this problem, we will first consider a
system of equations describing the interactions be-
tween three linear modes, Another system involving
two coupled modes will be discussed in Sec. 4. The
three-mode equations are
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Xy = Q%) + ByXg¥xy,
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where all quantities are complex, the dot refers to a
time derivative, and the asterisk indicates the com-
plex conjugate. These equations have been widely
studied!:3 under a variety of special assumptions
concerning the complex coefficients (a,, 8,). In Sec.
2 we will also make use of one of the common as-
sumptions concerning the coefficients g, in order to
obtain certain sufficient conditions for the existence
of unbounded solutions. [Solutions of (1) are called
bounded if, for all ¢ = 0, 2;|x,(t)|2 = M < w for
some M.] In this case it will be shown that there is
an interesting geometric interpretation which also
clearly indicates the difficulty involved in establish-
ing the boundedness of all solutions. The general
case of arbitrary (a,, 8,) will be taken up in Sec. 3,

where a number of more abstract conditions for
unbounded solutions will be obtained. In Sec. 4 these
results will be compared with those obtained for two
coupled modes. In addition the existence of singular
solutions will be established under certain conditions.

As mentioned above, the primary interest in Eq. (1)

is when the linear modes are unstable. If we set
o, =iw, + vy, (W, yereal) (2)

then this means that at least one of the y, is positive.

Unless noted otherwise, it will be assumed in the
following that this is the case.

2. THE CASE B, = p,e’¢

In this section we will assume that the coefficients
B, in Eq. (1) are of the form

By = pre'®  (py, ¢:real). (3)
Note that all ¢ are the same, but the sign of p, is

not restricted to being positive. In this case one
readily obtains from Eq. (1)
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ar (pj.nk - pknj) = 2(Ykpjnk - '}fjpknj)y Sk =12, 3’( )
4

where n, = [x,]2. A simple but useful lemma which
can be applied here, and to other cases with various
generalizations, is the following:

Lemma: Consider the equation

HFO) + G20)] = aF (1) + bG2(0), (5)

where @ > 0 and b are constants and F(t), G{¢) are
arbitrary functions. If there exists initial states such
that

(b —a)F(0)+ G2(0)]> 0
then, for these states,

|F(t) + G2(t)] = | F(0) + G2(0)]e ¢, t=0.
The proof is elementary. If b > a, then aF + bG2 >
a(F + G2), and the result follows for the indicated
initial states. If b < a, then the same reasoning holds
for — F — G2, Note that if F(0) can have arbitrary
sign, then the condition (b — a){F(0) + G2(0)]> 0 can
always be satisfied. In this case the conclusion holds
for any constant b (not necessarily positive).
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From Egq. (4) one can now establish:

Eg. (1) has unbounded solutions if (3) holds and
either of the following conditions hold:

@)y, > 0 e > 0, (6)
) y7, <0 and pp, > 0.

and

These results follow simply from (5) by multiplying
(4) by either p, or—p,. It will be noted that conditions
(6) do not depend on the magnitudes of the w, or v,
(the magnitudes of the p, are never of importance,
since they can be eliminated by renormalizing the n,).
It is of some interest to note that Eq. (4) can be writ-
ten in terms of determinants, namely

%oh %o TP

4’)

K
dt

L * n, YiPg

The determinants equal (plus or minus) the area of
the parallelograms generated by their two respective
column vectors, only one of which is a function of
time (and which is constrained to remain in the first
quadrant). Thus (4) can be interpreted as the time
rate of change of one area being equal to another area
both generated by a common vector (1, %,) in the

first quadrant. (The relative signs of the two deter-
minants must, of course, be considered.) The prob-
lem with establishing boundedness [at least from

Eq. (4)] is related to the fact that, even if the area
decreases monotonically, it does not prove that the
vector (n, n,) remains bounded. In only one case can
this be established: If y; < 0, y, < 0,and pp, < 0
then, for all initial states, x; and x, asymptotically
approach zero. This result is obvious for small x,,
but not entirely trivial if the x, is initially large.
However, even in this case, the remaining x, (for
which y, > 0) becomes unbounded, so one again has

no demonstrably bounded situation [however, see (17)}.

To obtain further results, dependent on the magnitu-
des of the (w,, v, ), one introduces the action-angle
variables

x{t) = At) expli[w,t + 6]}, (1)

where A,{t) and 6,(f) are real function. Substituting
(7) into (1) yields

A, =y, + p,A, A,, coso, (8)

wherek =k’ # k" and § = 03 — 6, — 6, T ¢
satisfies

6 = Aw— (p1A1PApA, + pAJALA S + psAGAAY)

X sin 9.  (9)
From Egs. (8) and (9) one can obtain
4,44, sin6) = AwA, 4,4, cos6 + TA;4,4, sing,
which can be put in the form [using (8}]

4

Z <A1A2A3 siné “'ZAB% A%) =TA; 4,4, sing

— 2, (%)A% (10)

for any k. In these equations
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Aw =wy— w, — W, F=y1+72+73. (11)
From (10) one can conclude the following:

Eq. (1) has unbounded solutions if (3) holds and

either
(a)T'> o, (12)
®Ir=0 Aw=0 (somey,>0)

(12a) clearly holds if Aw = 0. Note that, if Aw = 0 and
I' = 0, one cannot conclude from (10) that all solutions
are bounded. If Aw = 0,then, by taking G =4, and

F =~ (2p,/Aw)A A,A, sing, one can again apply (5).
Since F(0) can have arbitrary sign, only the condition
(12a) is required. Part (b) is based on the fact that if
d(FG)/dt = cF2(c > 0), then either FG is unbounded,
or F tends to zero and FG may remain finite—in
which case G is unbounded. In either case one has
unbounded functions. I (12b) holds, one will also have
a constant of the motion if one of the y, = 0. It is
noteworthy that conditions (12) do not depend on the
signs of the nonlinear coefficients p,.

The results of this section show that if (3) holds and
there is linearly unstable mode (say y, > 0), then all
solutions of (1) can be bounded only if

Y2 =0,v3=0, pypy; <0, P1P3 <0, (13)

¥1 tvs T y3 =0 (and Aw = 0 in the case of equality).

That even these conditions are not sufficient to guar-
antee the boundedness of all solutions is illustrated
by the following case. Assume that (13) holds, Aw =
0, and y, = y5. In that case 6 = (0, 7) are solutions
of (9), and Egs. (8) for # = 2, 3 are redundant if A, =
(p2/p3)Y2A 4. One can then easily show that A; can
have unbounded solutions. An important feature of
this last unbounded solution is that it is related to a
set of initial conditions which have measure zero
[namely 6(0) is restricted and (4,, A;) are related].
This is one of the characteristic problems which
arise in trying to establish boundedness—namely one
must deal with all solutions, including groups of
measure zero.

3. GENERAL CASE

We now consider the general case where

By =P’ (o, > 0),
where (p,, ¢,) are real and the p, are now positive
quantities. Unless noted otherwise, we will assume
sin(¢, — ¢,) # 0. Substituting

%y = PRL/2A ) explifw t + 6]}

into (1) yields, in place of (8) and (9),

(14)

A,=yA, + VA,A,, cos(6 + ¢,
6= Aw — V[AJAA, sin(6 + ¢5)+ AJA A,
X sin(0 + ¢,) + AfA,A, sin(d + ¢,)],

(15)

where V = {p;0,03 02, 6 =605 — 6, — 6, and Aw =
w3 — W, — w;. Inthe present case, with arbitrary
phases ¢,, it is only possible to obtain one equation
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which involves only the square on the amplitudes
N,= A%. From the first equation of (15) one obtains

sin(¢5 — ¢o)N; + sin(p, — ¢3) Ny, + sin(p, — ¢, N,
= 2y, sin(¢3 — ¢5)N; + 2y, sin(p; — <;[)3)N2

+ 2y, sin(¢, — ¢, )N, (16)

From (16) we can establish a number of conclusions:

If the three complex vectors §, do not lie in the
same half plane, then the solutions of (1) are 17)
unbounded, bounded, asympotically tend to
zero if all y, > 0,y, = 0,v, <0, respectively.

This resuit comes from the fact that, if the 8, do not
lie in the same half plane, all the sine functions in
(16) have the same sign, and (17) follows trivially. It
was concluded by Wilhelmsson, Stenflo, and Engel-
mann3 that a necessary condition for singular (“explo-
sive”) solutions of (1) is that the complex vectors B,
must lie in the same half plane. This is confirmed by
(16), because otherwise the magnitude of sin{¢p, —

¢ )N, + sin(¢, — ¢3)N, + sin(p, — ¢, )N; cannot in-
crease faster than exp[2 max(y,, y,, y3)t], and hence
there is no singular solution. It might be noted that
the existence of singular solutions can never be esta-
blished from linear equations such as (16). Next:

If sin(¢, — ¢;) = 0, and if either y, or v, is (18)
positive, then (1) has unbounded solutions.
This is similar to (6) except that the third vector §
now is not colinear with the other two. Another con-
clusion one can draw from (16) is the following:

Assume that the three vectors g, lie in the same
half plane. If the y, corresponding to the vector
B, which lies between the other two vectors satis-
fies 7,7, < 0 (for both I = k), then there are solu-
tions of (1) which are unbounded in time. (19)

Under the assumption of (19), all sine functions in
{16) do not have the same sign. Label the vectors
such that ¢5 > ¢, > ¢y (P35 — ¢y < 7). If yq,v53> 0,

yo < 0, then the function on the right side of (16) is
positive, and not less than 2 min(y,, y;) times

sin(¢ 5 — $p)N; + sin(py — ¢3)N, + sin(p, — ¢, )N; =
M(t). Hence for the initial state M(0)> 0, one has un-
bounded solutions. On the other hand, if y,, y53< 0,
and y, > 0, the right side of (16) is negative, and
hence d( — M)/dt is not less than 2y,( — M) and there
are unbounded solutions if M(0) < 0. This establishes
(19). By an analogous argument one can establish:

If the three vectors §, lie in the same half plane,
and y, > (y1,y3) > 0 or (y,y3)> v, > 0 labeled
as above), then there are solutions at least expo-
nentially unbounded with growth rates of at least
2y, or 2 min(y4, ¥3), respectively. (20)

What is curious is that one cannot establish unboun-
dedness from (16) when the g, are in the same half-
plane and y, lies between y, and y;—even if they are
all positive. This will be partially remedied below.

To obtain sufficient conditions involving Aw and T,
one can proceed by obtaining a generalization of
Eq. (10). From (15) one finds that, for any %,

1191
d . Aw
T (AALA, sin(6 + ¢,) — §I7Akz) w
. w
= FA1A2A3 sin(f + (;bk) - 27k (TV)Akz
+ VA%A%’ Sm(¢k - ¢ku)
+ VAZA2, sin(¢, — ¢,,), (21)

where kB # k' # k", The appearance of the last two
terms, which are of highest order in the unknown
functions, complicates the sufficient conditions which
are most readily obtainable. The most general con-
dition which has been found from (21) is

Eq. (1) has unbounded solutions if, for some &,

Sin(¢k - ¢k') Sin(¢k - ¢ku) >0, (I'— 2’)’k)Aw (22)
sin(¢, — ¢,)=0and T = 0,

which may be compared with (12). The first proviso
of (22) can only be satisfied if all three vectors B,
lie in the same half-plane. Even then it is not satis-
fied for one k. The second proviso is clearly the
strangest in that the sign of Aw and (I' — 2y,) enters
the picture. While it seems doubtful that this is a
necessary condition, it is required to establish un-
bounded solutions from (21) by our present elemen-
tary methods.

The proof of (22), which is more tedious than pro-
found, consists of examining each of the many special
cases satisfying (22) and using arguments similar to
(5) or the one applied to (12b). These will not be
given since they are fairly straightforward. One
effect of the last two terms of (21) is to produce un-
bounded solutions even if I' = 0 = Aw [compare with
(12)]. Indeed, if Aw = 0, one can obtain from (21)

Zdi InfA;A,A, sin(6 + ¢,)] = T + 2[sin(¢,— ¢,,)

X Sin(¢k_ d)ku)]l/zAk (23)
for those k's satisfying (22), and for those initial
states for which sin(6 + ¢,) > 0 (see Sec. 4 for an
analogous analysis). This proves that there are un-
bounded solutions even if I' = 0. Moreover, (23)
strongly suggests3 that these unbounded solutions
will also be singular, but unfortunately no proof of
this has yet been found. However, in the case of

two coupled modes it is fairly easy to prove that
some solutions have singularities if Aw = 0 (Sec. 4).

4. TWO MODE EQUATIONS

Another system of equations, which is not frequently
considered despite its physical importance, involves
the coupling of only two modes (e.g., an unstable mode
and its harmonic). In this case the equations have the
form

Xy =0x, + Biayx, (24)
Xy = apxy + B3aY,

where normally one would be interested in the case
y; ~> 0. If the 8, are of the form (3), one can again
obtain (4) and hence the results (6) (withj = 1, k£ = 2).
Moreover, in place of (10), one now obtains

d . Aw .
T <A§A2 sinf — mA%): T'A? sing

— 2 (32)az, @s)
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where now 6 = 6, — 26, + ¢, Aw = wy, — 2w,, and

I = 2y, +y,. With these revised definitions the re-
sults (12) again follow. Thus when (3) holds, the
proofs of unbounded solutions are very similar.

However, in the more general case when (14) applies,
it is no longer possible to obtain an equation analo-
gous to (16). On the other hand, the equation analo-
gous to (21) is somewhat simpler. Using the vari-
ables introduced in Sec. 3, one can obtain from (24)

d
di

. Aw
(A%Az Sln(9 + ¢k) —-WA%

. Aw
=TAZA, sin(0 + ¢,) — 27, ‘2‘V>A%

+ EVAG ZDAZED sin(p, — ¢,), (26)
where k' = k, V= (p3p,)?, 6 =6, — 26;, and (Aw, I
are defined as in {25). The most general sufficient
condition obtained from (26) is, in analogy with (22}

Eq. (24) has unbounded solutions if, for some

k(T — 2,)Awsin(¢, — ¢,) = 0 and T = 0, (27

where again the signs of Aw and (I — 2y,) enter.

The new feature which arises in the present case is
that one can prove the following result concerning the
existence of solutions which are singular (“explo-
sive”).

If Aw=0and I' = 0, then there are solutions
of (24), with arbitrarily small [x,(0)(> 0,
which have movable singularities,5

(28)

That is, there are solutions which become infinite at
finite £, the value of which depends on the initial con-
ditions.

To prove this, subtract Eq. (26) with £ = 1 from the
one with 2 = 2 (Aw = 0). One readily obtains
d ’ !
Zf(AzlAz cosf’) = TA3A, cosé’ + V(2A3A43 + A%)
xcosz(dy — ¢;),

where 8’ = 6 + 3 (¢; + ¢,). Assume that cosz(p, — ¢;)
> 0 (if negative, then multiply by minus one, and re-
place cosf’ by — cos6’ in all that follows), and note
that 24243 + A% = (424,)%5. Then
d ’ !
ﬁ(A%Az cosf’) = T'A%A, cos6

+ V(A24,)¥3 cosz(d, — ¢, ) cosb’.

We consider those initial states for which cos6’(0)>
0, then for all ¢ = 0 for which |A3A4,| < «;the last

ATLEE
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equation implies that cos6’(t)> 0. Dividing by A%A4,
cosf’ and integrating yields

In(A24,) = In(A%4, cosf’) = 3a + Tt
+ Vcost (¢, — ¢:)f (434, 1/%at,

where the constant a is related to the initial condi-
tions. We now neglect (I = 0) and write this in the
form ;

InF=a+b fo F( Yt

where a = 3V cosz(¢, — ¢,). The function G(t) =
[e7c — bt] ! satisfies the equation

G =c+b 5 GE)a".
Subtracting this from the last equation yields
In(F/G)=a—c + b fo‘ [F(t') — G(t)dt’,

and choosing ¢ such that @ — ¢ > 0 proves that F({) =
G(¢) for all ¢ > 0 such that |F(t)] < . Thus A4,
has a singularity which is not less than [¢t, — ¢]73, for
these initial states. The above analysis is easily
generalized (by retaining I'f) to show that if the ini-
tial states satisfy V|cosz(¢, — ¢;)| (424,13 + T > 0,
then there are solutions which are singular (even if
T < 0). In other words, for finite initial states there
are singular solutions if I" is not negative too.

5. CONCLUSION

It has been shown that under a number of conditions
the solutions of (1) and (24), in which one linear mode
is unstable, are unbounded. In certain cases it was
possible to show that the unbounded solutions are not
more rapid than exponential, whereas in other cases
they have movable singularities.® The fact that the
mode coupling does not produce bounded solutions
under more general conditions is undoubtedly due to
the particular form of the couplings which appear in
these equations. This convolution form of coupling,
with its off-diagonal character, allows for a number
of possible “leaks” in the phase plan (x,, x'{, cen )
Indeed, only the last two cases in (17) give any assu-
rance that there are cases for which (1) [but not (24)]
has only bounded solutions, and these do not refer to
the situation where some y, > 0. What would be of
greater physical interest are the properties of the
solutions of systems with the combined couplings in
both (1) and (24). Clearly more sophisticated meth-
ods of analysis must be developed before these inter-
esting questions can be answered.

* This work was supported wholly by the Joint Services Electron-
ics Program (U.S.Army, U.S.Navy, and U.S, Air Force) under
Contract DAAB-07-67-C-0199,
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linear Plasma Theory (Benjamin, New York, 1969); A. S. Bakai,
Nuclear Fusion 10, 53 (1970). Instabilities induced by nonlinear
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Engelmann and H. Wilhelmsson, Z. Naturforsch. 24a, 206 (1969)
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The problem of polynomial solutions of differential equations which are of interest in physics is studied by the

Hardy-Lebesgue space technique.
INTRODUCTION

The Hardy-Lebesgue space ¥,(D) which is a Hilbert
space consisting of analytic functions in the unit disc
D of the complex plane is particularly suitable for
the study of the problem of “polynomial solutions” of
differential equations. Such solutions have led to the
classical orthogonal polynomials which are of parti-
cular interest in physics.

In a recent paper? one of us (E.K.I.) has presented a
uniform technique for the study of differential and
difference equations in the Hardy-Lebesgue space.
The approach is based on the representation of the
Hardy-Lebesgue space by means of the unilateral
shift operator and the reduction of the problem of so-
lution of differential and difference equations in 3,(D)
to a perturbation problem of nonself-adjoint operators
in an abstract separable Hilbert space XC.

In the present work we extend this approach to the
study of differential equations of physics and examine
the conditions under which these equations have poly-
nomial solutions.

I. THE REPRESENTATION OF THE HARDY-
LEBESGUE SPACE BY MEANS OF THE SHIFT
OPERATOR

Denote by I an abstract separable Hilbert space over
the complex field, by &o(D) the Hardy—Lebesgue
space consisting of all analytic functions f(2) = ) =1

a(m)zn-1, |z|< 1 with the additional property ¥, -,
| a(n) |2 < w0, by {e } 1 an orthonormal basis in 3 and
by V the unllateral shift operator (V:Ve, =e¢,,,). We
can easily see that the following statements hold-2:

(1) Every value z in the unit dise (|z|<1) is an eigen-

value of V* the adjoint of V,and the set of eigenele-

ments f, Z)n L 2" 1le, forms a complete system in

JC in the sense that if f is orthogonal to f, for every
:}2|<1,then f = 0.

(2) The mapping f(2) =

(fz ,f),f € % is an isomorph-
ism from 3 onto ¥,(D

(3) If C0 is the diagonal operator, C,: Cye, = ne,

n=1,2--,and f(2) = (f,,f),then
zf(2) = (f,, Vf), (1)
f'(@) = (f,,C, V), (2)
F(2) = (f,,(CV*)2f), (3)
FOX2) = (£, (G V"), (4)
2f'(2) = (£,,(Co— D f), (5)
22f"(2) = (f,,(Co — I)(Cy — 2D)f), (6)

2nf®(2) = (f,,(Cy— D(Cy— 2D)+-+(Co — nD)f), (T

2f"(2) = (f '(R)) — f'= (£, (CoV*Co — 2C,V¥)),  (8)
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22f"'(2) = (22 "(2))" — 22f"(2)
= (fz ’(COV*C%) - 5COV"(CO + SCOV*)f)’ (9)
2f"(2) = (2f "(2))" — f"(2)

= (£,,(CoV*CuV*Cy — 3CoV*CyV*)f) etc.  (10)

II. DIFFERENTIAL EQUATIONS WITH POLYNOMI-
AL SOLUTIONS

Consider the general differential equation leading to
the classical orthogonal polynomials
(@ +agz +B22) f"(2) + (p +y2)f'(2) + bf(2) = 0.

{11)
Due to (2),(3),(5),(6),and (8) the corresponding oper-
ator! in X is

T =a(CyV"2 + pCyV* + ay(CyV*Cy — 2C, V*)

+B(Cy— I)(Cy— 2I) + y(Cy— I)
or in virtue of [V} C,]. = V*:
T=aCyCy + NV*¥+ [a,Cq(Co+ )
+ (p— 2a,)ColV* + B(Cy— INC, + 21)
+y(Co — I). (12)
This operator is of the general form
Ty=A V¥ + A V* + A, (13)

where A;, i=0,1,2,are diagonal operators A,: A,e,
=a,(ne, i=0,1,2, n =1,2,-+,

The operator (13) leaves, obviously, invariant every
finite-dimensional subspace i, , spanned by the ele-
ments {e;,€5,...,€,}. T,has therefore, restricted in
the subspace JC a nonempty purely point spectrum.

Proposition 1: The eigenvalues of T, restricted
on the subspace 3, are precisely the values ao(m ,
m=1,2,...,n

Proof: Let
Tyf = Af

with A # ay(m), m =1,2,...,zand f € 3,. Then
scalar multiplication of (14) by e, gives ( f, ) = 0;
consequently, scalar mu1t1pl1cat1on by e,-1 g1ves
(f,e,.1) = O ete,i.e.,f = 0. Hence A S ay(m), m =1,
2,...,n. Conversely,given an a,(m), m < n, it is
possible to determine the coeff1c1ents X19Xgy .o yy
of the element f =27, x,¢;, where x,,i = 1,2,...,m
not all zero in such a way that (14) 1s satlsﬁed for

A = ay(m). In fact,for x = a ,(m) weareledtoalinear
homogeneous system of m — 1 equations with » un-
knowns. We can normalize f by taking x,, = 1 and de-
termine recursively the other components. Of course,
without loss of generality we assume that a (i) #
ay(m), i < m because if ao(l) = ay(m) for i < m then
1nstead of X = ay(m),we consider )\ = a,(7) and instead

(14)
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of the element Y21 x;¢;,the element Z;:l x;e;.

Proposition 1 holds in general for every operator T,

of the form T = AV"‘k+A V* -+ AV
+ A,. Tt also holds for the operator
T,=AV*+ A, (15)

which is of particular interest,

Remark: In Ref.1 the typical example of the ordi-
nary Schrodinger equation for a class of meromorphic
potentials of the form U(z) = g,z + +-- + 352 2 4
a 2”1+ w(z2) was studied, where w(z) JCZ(D) i.e.,

w(2)f(2) € X,(D) for every f(z) € ¥,(D).

The condition w(2) f(z) € 3,(D) for every f(z) € &,(D)
was used for the boundedness of the operator W(V 3

For ¢, =0, i=3,4,...,n it has been proven that the
Schrodmger equatmn has solutions in Jc o(D) for
a, Samn)=nr—1)n—-2,n=1,2,-- However,
Proposition 4 of Ref. 1,which refers to a counter
example for the exclusion of the case

a, =an), n=1,2,--, (16)
for some #,is false. Obviously, the elementf_ zez +
eg is an elgenelement of T =A + V*— jV*2 [opera-
tor (12) of Ref. 1]; with eigenvalue a(3) = 2. This is
also an eigenvalue of T = A + V— V2, According
to Proposition 1,which can be easﬂy generalized, and
due to the fact that Sp(T) = Sp(T*), (16) always holds,

Pyroposition 2: For the operator (15) restricted on
the subspace ¢, if one of the values a,(n) vanishes,
say o, (k) = 0,then the eigenvalues are also the values
ay(m);but the corresponding eigenelements for m > k&
have the form

fZ)xe

The proof is similar to that of Proposition 1,

x, = 0,

Proposition 3: For A, = 0 the only possible eigen-
value of T, restricted on the subspace 3¢, is the
point zero.

Proof: Let A # 0 be an eigenvalue of T, with the
eigenelement f # 0. Then scalar multiplication of the
eigenequation by e,,e,_,* - leads to f = 0 which con-
tradicts the hypothesis.

The above propositions cover the cases of hypergeo-
metric equations and the equations leading to the
Bessel, Laguerre, Hermite, Legendre, Gegenbauer,
and Jacobi polynomials.

. APPLICATIONS
A. The Hypergeometric Equationz(1 — 2)f"(z) +
[y —ta +p + 1z]f'(2) — apf(2) = 0

The corresponding operator is of the form (15) where
A, =CoCo—T+y), Ag=— (Co— I)(Cy — 2I) —
(@ + B+ 1)(Cy— I) and X = af are the eigenvalues.
Hence

ag(n) =— (n— 1)(n—2) —

an) =nn—1+7y).

(a+p+Drn-—1),
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According to Proposition 1 for a,(n) =0, n=1,2,--
ie,y#—nn=0,1,2,...,we have polynomial so-
lutions if and only if

ap =—

m—1)(nr—-2)—(@+p+Hr-1),

n= 1,2,...,

or
aB:—n(a+B+n)’

or

Bla + n) =— nla +

either

n:091123”',

n),i.e.,if and only if

a=—mn,n=0,1,2,---, orf=—mn,n=0,1,2,---

In the case that y = negative integer or zero, it fol-
lows from Proposition 2 that we again have polyno-
mial solutionsifaorf=—-n, n=0,1,2,---

The polynomials in this case [y = —m,a,(m + 1) =0,
m < n] are of the form

fley= 7,

C.. 2
i5he1 i

B. The Kummer-Laplace (Confluent Hypergeometric)
Equation zf"(z) + (a + 1 — 2) f'(z) + bf (2) = 0
In this particular case we have from (2),(5), and (8)
T, = Cy(Cy + al)V* — (Cy— I).
Hence
Ay =CylCy tal), Ay=—(C—1D),
and
a(n)=n(n+a), ayn)=—(m-1).

Thus, fora = —n,n=1,2,...,we have polynomial so-
lutions if andonly if b =#—1,2=1,2,+-+,0r b = n,
n=0,1,2,-++, These solutions are the well-known
generalized Laguerre polynomials L%(z).

If o;(k) = k(k.+ a) =0,i.e.,a =— k,thene,,; is an
eigenelement of T, with eigenvalue b = % and the cor-
responding to » = k + 1 solution is of the form f(z) =
czk,

C. The S-Wave Schriodinger Equation

Consider the equation

f@ +2f@) =0,

i.e.,the S-wave Schrddinger equation for Coulomb po-
tential at zero energy. From (8) we have

T, = Co(Co— 1) V*

and A = — d # 0. From Proposition 3 it follows that
the above equation for d # 0 does not accept a poly-
nomial solution.

D. The Bessel Polynomials

These orthogonal polynomials were encountered by
Burchnall and Chaundy? and studied by Krall and
Frink4 and Burchnall.5 They are related to the Hankel
functions of imaginary argument. The differential
equation is

z2f"(2) + (az + aq) f'(z

d=0,

) + bf(2) = 0.

In that case from (2),(5),and (6) we have



DIFFERENTIAL EQUATIONS
T, =a;CyV* + (Cy— D(C, + al —2I).

For a, # 0 we have polynomial solutions if and only
ifb=—n@+n—1),n=0,1,2,---, These are the
Bessel polynomials, In the special case 22f"(z) +

(2z + 2)f'(2z) + bf(z) = 0 considered also by Krall and
Frink in connection with certain solutions of the wave
equation we have a =a; =2and b=—nr + 1), n=
0,1,2,---, For a; = 0 the operator T, is diagonal
with eigenelements the basis {en P, L.e., the solutions
in this case are the polynomials z#,n = 0,1,2,---.

E. The Hermite Polynomials

In the {g} representation the equation of the one-di-
mensional harmonic oscillator isé

f"(z) — 2z2f'(2) + bf (2) = 0.
The corresponding operator is
Ty = Cy(Cy + NV* — 2(Cy — ).

Here a,(n) = n(n + 1)#0forn=1,2,--+., FromPro-
position 1 it follows that the above equation has poly-
nomial solutions if and only if &6 = 2(n — 1),n =1,
2,-+-orb=2nn=0,1,2,---. These are the well-
known Hermite polynomials.

F. The Legendre Polynomials
Consider the equation

(1 —22)f"(2) — 2zf'(2) + bf(z) = 0.
In this case we have

T, = Co(Cy + DV** — (Cy— 1)2,
where ay(n) = n(n + 1) # 0 for n=1,2,---, We have
polynomial solutions if and only if & = (n— 1)2, n=
1,2,---orb=n2 n=0,1,2,*, These are the

well-known Legendre spherical polynomials.

G. The Gegenbauer Polynomials
Consider the equation
(1—22)f"(z) — (2a + 1)2f’(2) + bf(2) = 0;
we have
T, = Co(Cy + 1) V¥ — (Cy — I(Cy + 2al — I).

Here again a,(n) =n{n + 1) = Ofor n=1,2,-+-. We
have polynomial solutions if and only if b = n(n + 2a),
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n=0,1,2,---. These are the so-called Gegenbauer
or ultraspherical polynomials.
H. The Chebyshev Polynomials

Consider the equation

(1—22)f"(2) — 2f'(2) + bf(2) = 0.
In that case

T, = Cy(Co + NV ¥ — (C, — 1)2.
We obtain the so-called Chebyshev polynomials if and
only if b =n2, n=10,1,2,"".

Note that in examples E-H, A, = 0. This means that
a,(n) =0, ¥n and we are led to even or odd polyno-
mials,

I. The Jacobi or Hypergeometric Polynomials
For the hypergeometric differential equation

(1—22)f"(2) + [By —ay — (ag + B + 2)2]f'(2)

+ bf(z) =0,
we have

T, = Cy(Cy + DV*? + (B, — a)Cy V*

—(Co— D(Cy + ay + B4).
Proposition 1 holds for both cases 8, —a, # 0 or
B, —a, = 0. Thus, we obtain polynomial solutions if
and only if b = nlay +8, +n+1),n=0,1,2,---,
These polynomials are the well-known Jacobi or
hypergeometric polynomials.
IV. GENERALIZATION
Consider the n-order differential equation

[B-1(2) + a,2,]y® + [P, ,(2) + a,_12z#-1]y»D + ...
+ [Py(2) +a 2]y’ + by =0, (17)

where P, are polynomials of degree n.

Denote by @ the operator in ¥, which corresponds to
the above differential operator in J3,(D) and by 0p(Q)
the diagonal operator,which corresponds to the
Euler-type part a,27y® + q_,271lyerD) + ... q 2y,
Then according to the generalization of the Proposi-
tion 1 we conclude that the necessary and sufficient
condition for Eq. (17) to have a polynomial solution is

— b = spectrum of Op(Q).
0p(Q) is given by (5)-(7).

E.K.Ifantis,J.Math. Phys. 12,1961 (1971).

E.K.Ifantis,J.Math. Phys. 11,3138 (1970).

3 T,L.Burchnall and T.W.Chaundy, Proc. Roy. Soc. (London) 134A,
471 (1931,

4 H.L.Krall and Q. Frink, Trans. Amer.,Math. Soc. 65, 100 (1949).

5 J.L.Burchnall,Can.J.Math. 3,62 (1951).

6 This equation follows from the conventional one: y” + (A —
a2x2)y = 0,if one makes the substitutions y = f - exp(— 3 ax2),
z=al2x, b=(0a)—1.
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The theory of multiplicative stochastic processes is contrasted with the theory of additive stochastic processes.
The case of multiplicative factors which are purely random, Gaussian, stochastic processes is treated in detail,
In a spirit originally introduced by theoretical work in nuclear magnetic resonance and greatly extended by
Kubo, dissipative behavior is demonstrated, on the average, for dynamical equations which do not show dissipa-
tive behavior without averaging. It is suggested that multiplicative stochastic processes lead to a conceptual
foundation for nonequilibrium thermodynamics and nonequilibrium statistical mechanics, of marked generality.

1. INTRODUCTION

The purpose of this paper is to present results in
the theory of “multiplicative stochastic processes.”
The physical applications of this theory will be pre-
sented in a sequel to this paper.

Effective use of stochastic processes in physics was
first achieved in the theory of Brownian motion,1

The basic ideas were generalized by Onsager and
Machlup in their theory of fluctuations and irrever-
sible processes.2 Further generalizations, which
resulted in a general stochastic theory for the linear
dynamical behavior of classical thermodynamical
systems, close to but not yet in full equilibrium, were
presented by Fox and Uhlenbeck.3:>4 The theory of
Fox and Uhlenbeck includes the Langevin theory of
Brownian motion and the Onsager and Machlup theory
for irreversible processes as special cases. In addi-
tion, it includes the linearized fluctuating hydrodyna-
mical equations of Landau and Lifshitz5 and the
linearized fluctuating Boltzmann equation as special
cases.

In each of these special cases, and in the general
theory, the mathematical description used involves
either linear partial integro-differential equations
or linear matrix equations which are inhomogeneous.
The inhomogeneity is the stochastic “driving force”
of the process. Consequently, we shall refer to these
processes as “additive stochastic processes.” The
processes to be presented in this paper will be seen
to involve homogeneous equations in which the sto-
chastic “driving force” enters in a multiplicative
way. These processes will, consequently, be called
“multiplicative stochastic processes.”

Multiplicative stochastic processes arise in a natu-
ral way in the field of nuclear magnetic resonance.
The nature and history of this development may be
found in a paper by Redfield.® Major generalizations
of these ideas for other areas of physics have been
presented by Kubo?™ 92 Kubo has also pursued the
mathematical foundations for a theory of multiplica-
tive stochastic processes in his work. The special
attention paid to purely random, Gaussian, stochastic
processes in this paper will serve to further clarify
and support the spirit of Kubo's earlier work.

2. MATHEMATICAL PRELIMINARIES

The fundamental stochastic process to be considered
here is the purely random, stationary, Gaussian pro-
cess.10 Let ¢(¢) denote such a process. Processes
with an average value of zero will be considered
throughout. This is denoted by

where A is a constant. The purely random quality of
the process is reflected in the presence of 6(f — s).
The dependence upon time differences only, in (2),
reflects the condition of stationarity. The Gaussian
property may be introduced in terms of the higher
order averaged products. All odd order averaged
products are zero:

<q;(t1) e &(tzn—1)>:0, n:l’z’-.._ (3)

All even order averaged products are given by
. 1 (Gt 7 bayn)
2"n! pes,, 171 PV o1

1 5 omaniio
T amnl pes,, A I o) — bejn). (4

(P(t))+ @lty,) =

EPES denotes the sum over all permutations p of the
2n

symmetric group of order (2n)!, S,,. Because the
two orders of the arguments of a delta function give
the same value and because each arrangement of fac-
tors in a product of delta functions gives the same
value, each distinct term in (4) is (2#n!)-fold redun-
dant. Since S,, is of order (27)! the expression in (4)
has [(2n)!/2"n!] = 1-3:5- -+ (2n — 1) distinct terms.11

3. ADDITIVE STOCHASTIC PROCESSES

The prototype for the application of stochastic pro-
cesses to physical phenomena is found in the theory
of Brownian motion.1:3,10,12,13 The velocity #(¢) of
a heavy particle with mass M in a fluid which is in

thermal equilibrium obeys the Langevin equation

du(t)

40— _ aut) + F0), (5)

M

where ¢ is the dissipative, friction coefficient, and
F(t) is a purely random, stationary, Gaussian driving
force. It is thought that F(f) corresponds with the
true microscopic force on the heavy particle which
is produced by a great quantity of collisions in rapid
succession, between the heavy particle and the mole-
cules constituting the fluid. From a point of view
which considers time on a much longer scale than the
scale determined by the time between collisions, the
true force may be replaced by F(f). This means that
M/a > 7,,where T, measures the microscopic colli-
sion correlation time, and M /o measures the relaxa-
tion time from the macroscopic viewpoint.

By assuming that F‘(t) is purely random we have that
(F(t)F(s)) = 2D8(t —s), (6)

which means that microscopic collision correlations

(o) = 0. 1) last effectively “no time” in the macroscopic time
tion is i b scale. In this way, a purely random process is used
The mean square correlation 1s given by to describe a situation involving two distinct time
lp(t) p(s) = 2a6( — 5), (2) scales: a microscopic time scale and a macroscopic
J. Math. Phys., Vol. 13, No. 8, August 1972 1196
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time scale. Because the fluid remains in thermal
equilibrium throughout the relaxation process, F(f)
is also stationary. The Gaussian property for F(t)
may be thought to be a consequence of the central
limit theorem of probability theory since F(f) results
from the collective effect of large numbers of ther-
mally randomized collisions. Using the equipartition
of energy theorem leads one to the Einstein relation

D =K, Ta (7

in which T is the temperature, and K is Boltzmann's
constant. Equation (7) is the prototype of so-called
fluctuation-dissipation theorems.3,4

Equation (5) is manifestly inhomogeneous and exhibits
the “additive” quality of this stochastic process. The
process described by (5) is a one-component station-
ary, Gaussian, Markov process. The generalization

to N-component stationary, Gaussian, Markov pro-
cesses has the form3

t)_Z)A t)+Z)sUa](t)+F() (8)
where i =1, 2 , N, A is an N X N antisymmetric,

real matrix, S] is an N XN symmetric, real matrix
with nonpositive eigenvalues, and F. ;(#) is an N-com-
ponent purely random, stationary, Gauss1an “driving
force”. The analog to (6) is

<F,,(t)F](S)> = ZQUé(t - S), (9)

where ¢;; is a symmetric matrix with nonnegative
e1genvalues Corresponding with (7) is the general
fluctuation-dissipation theorem

= $ DG B} + By, (10)

Q
where G;; = =4+ S;;,and E;; is the entropy matrix
which appears in the second] order formula for the
entropy

S(t) =

E is symmetric and positive definite. Note that (8)
1s also manifestly an “additive” stochastic process,
with N components. The general physical applicability
of (8)-(11) suggests that the interactions generated

by a macroscopic system which is fluctuating about
its equilibrium state may be characterized as purely
random, stationary, Gaussian “forces.”

So — %KBZ) Z_) a,(t)E a,(t). (11)

4. MULTIPLICATIVE STOCHASTIC PROCESSES

An alternative usage for stochastic processes in the
description of nonequilibrium processes is possible,
The prototype for this alternative method will be
called “frequency fluctuation dissipation.” In Kubo's
work this is the example of a harmonic oscillator
with a randomly modulated frequency.?

Consider a harmonic oscillator described by the com-
plex variable a(¢). The equation of motion is

2 a(t) = iwgalt), (12)

where i = v—1, and w, is the frequency of oscillation.
The solution 1s (12), 1s trivial, and is

a(t) = eiwota(0). (13)

1197

Suppose that the oscillator is at temperature T, so
that those physical properties which determine w,
exhibit thermal fluctuations. For instance, the length
of a pendulum or the spring constant of a Hooke's

law spring are such properties. As a consequence,
the frequency of the oscillator will fluctuate. We will
assume that this frequency fluctuation may be charac-
terized by a purely random, stationary, Gaussian pro-
cess ¢(f) with mean value zero. The properties of
@(t) are given by (1)-(4). Equation (12) becomes

d : ~
7 a(t) = iffwy + o®)]al®) (14)
The homogeneity of (14) is manifest, and the “multi-

plicative” nature of the stochastic process is evident.

It will be proved that the average value of (14) is
2 (a(t) = liwy — N a®). (15)
The solution to (15) is clearly a damped oscillation,
whereas the solution to (14), without averaging, is
oscillatory. This example must be distinguished from

an example of damped oscillations which arises from
the Brownian motion of a harmonic oscillator.3

Proof of Eq.(15): The formal solution to (14) is

a(t) = eiwol exp <z fé q}(s)ds)a(o). (16)
Therefore,
{a(t)) = eiwot<exp z( (: (}(s)ds>>a(0). 1
However,
<exp< fo (p(s)ds>> (1) <f0 s)ds>'>. (18)
Using (3) gives,for oddn =2m — 1,
<(fé c;(s)ds)”>= f; e fé <‘;(31) ces
X @(Spmqa NdSy - dSypy =0, (19)
Using (4) gives, for evenn = 2m,
(Rewa)y
= fo fo (¢(sl) O(Sgmldsy - dsy,
= fO fO 2mm' Peszm 27AT
X n o(s Sp(2j) ~ p(2j-1))dsl ceedSy,,
—_— Am t- »
h 7? PESy 0
t m
x Jo A 8(Sp(2j) — Sp2j-1)) 451 """ dS 3
::' ey (fo fo 8(s, — sp)ds,ds )
=27 (om)1em, (20)
m!

Putting (20) and (19) into (18) gives

J. Math. Phys., Vol. 13, No. 8, August 1972
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<exp<i fotg;(s)ds>> 2 —Z—T:T (2m)! tm
(=

M _ e, (21)

Therefore, putting (21) into (17) gives (15). This
completes the proof.

Because of (15), it is clear why (14) is called fre-
quency fluctuation dissipation. This is an example of
a one-complex-component situation. There is also
an N-complex-component generalization for multi-
plicative stochastic processes. However, it will later
be shown that a multicomponent-complex situation is
a special case of a multicomponent real variable
generalization. Therefore, the multicomponent gene-
ralization will be given for the real variable case.
The multicomponent case is proved using the purely
random character of the stochastic “force” and the
Gaussian property of its higher order averages.

Let a (f) for @ =1,2,...,N be an N-component real
process which satisfies the equation

d -
7 ) =2 (Ao + Age )], 0), (22)
where A, = —A_, and A () =—A_, (t). The

matrix components of A w,(t) will be assumed to be

purely random, stationary, Gaussian processes with
average values of zero, and therefore, we have

(A, =0 foralleanda’, (23)
(A aOA,,(8) =2Q,,,,0( —s), (24)
A psvan S2nm1) " Ay, (510 = 0 (25)
<Ap2nu2n(32n) e A#ﬁ’l(sl))
B 2"111 €S, in <A“p(ﬁ)"1:(2]')(81’(21'))
% A“p(zrl) "p(2j-1)(sp(2f‘1))>
- 2':1! pg,m z :’ll—jll Q“p(zj)”p(zj ¥ p(zj~1) Yplzj-1)
X 8(Spz) ~ Spezj-1))- (26)

The average value of (22) is
600 = D A ) + DT Qugalae, ). (@0

This is the generalization of (15).

The proof to (27) is found in the Appendix. Here, we
will give a plausibility argument for (27) which is
made rigorous by the more lengthy, rigorous, proof
in the Appendix. The irreversibility implicit in (27)
will be demonstrated following the plausibility argu-
ment.

From (22), by averaging, we get
a0 = D Ay, a0+ T (A, (Bag, (). (29)

It is the second term on the right-hand side of (28)
which needs simplification. Integrating (22) with res-
pect to time between { — 7 and £ gives
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a () —a(t—71)= Z}Aqa, ft_ a,(s)ds

+Z;ft_r A, (8)a,(s)ds. (29)

Multiplying (29) by A, (#), and summing over « gives,
upon averaging the sum,

24, Da () — T (A, (Ha it — 1)
= E Z; Ao f;., (Aﬂa(t)aa,(s))ds

DT i (A, A, (s)a,,(s)ds. (30)

o of

Now, it seems plausible that because of (24) and (26)
that

(A, Ba t —1) =0 (31)
and
¢ .
Jir (ApaOa,, (shds = 0. (32)
Using (31) and (32) in (30) will give

E (A, (Ba @) = E Z) i Ay A, (5)ay (s) ds.
(33)

Using the Gaussian property of A ,(¢) and (23) makes
it plausible that

DD ft_ (Aea(t)ﬁw,(S)aw(S))dS

= Z) Z; f,_ Ay (DA, (sNa,, (sNds. (34)
For the right-hand side of (34) we use (24) and get
S fr Ay (DA, () a,, (s)ds

=55 fr. 2Qauadlt
=23 20 Qqaale ). (35)

—s)a_,(s)ds

Putting (35) with (34) into (33) gives
A (0a () = 2 T Qpaaalaq ). (36)

Returning to (28) with (36) gives (27), if we simply
rename indices. This plausibility argument depends
upon the truth of (31),(32), and (34). In the Appendix
it is shown that the result obtained in (27) is rigo-
rously achieved.

5. IRREVERSIBILITY

The irreversibility in (15) is obvious. That of (27) is
less easily seen. To see that zrreversxblhty arises
from averaging, we will consider both Z)ua B a )
and 2, {a,(#)) {a(t)) using both (22) and (a1).

Using (22) and the antisymmetry of both 4, and
Aw,(t) gives

7 Da0a ) =25 T a0 4,qa,0)

o af

+25 Ya, A, Ba,, @) =0 (37

o af
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Therefore Z} B a,(t) is a conserved quantity dur-
ing the unaveraged time evolution. Using (27) and the
antisymmetry of A, gives

71 20D @) = 25 T a0 Aolay, )

o o

+235 2 E (@ (1) Qyooaity ()

=25 2 I @, (0) Quopalan 6. (38)

From (24) it follows that

E <A t)Aew(s» - ZZ}Qaeea/&(t - S) (39)

Let y, be an arbitrary N-component vector. Using
(39) gives

IR Z)y «@ 660 Vor

o af

- E Z) E Zya aeea/ya, fo 6(t - S)dS

o of

=2 2 b fo Y LA o)Ay (SN Yy ds

== P Ao AuOn) (B At

= 0. (40)

The last equality in (40) follows from the antisym-
metry of the matrix A  (¢), and the inequality follows
from the form of the integral, Putting the results
expressed by (40) into (38) gives

Z) la ENla ) = +223 25 Z) N()

o o

X Qaeeql<aal(t)> = 0- (41)
Therefore the quantity 23, {a_(¢)) (a (¢)) shows a
monotonic decrease to its equilibrium value. The
inequality in (40) shows that the matrix 23, @, ¢q,, 18
a symmetric matrix with nonp051t1ve eigenvalues, If
all the eigenvalues of Ee «66qs re also nonzero,
then the equilibrium state corresponds with (a ) =90
for alla=1,2,...,N. The possibility of zero value
eigenvalues of Z}e wgeos COTrresponds with the pos-
sibility of certain linear combinations of the {a ( W's
being conserved quantities during the overall ap-
proach to equilibrium. In this case equilibrium is
not characterized by (@) =0 for alla =1,2,...,N;
for some a, {a,) = 0.

6. COMPLEX COMPONENT CASE

A problem closely related to the real case just des-
cribed involves N complex components Ca(t) for
a =1, 2, ..., N satisfying the equation

dt Cu(t) = Z} M,.,C. () + 23 M, ()C,, (). (42)

Both M, and M, (¢) are complex Hermitian mat-
rices. Therefore
M*

oot

=My, and M}, () =M, 0. (43)

aa'(t) is also a purely random, stationary, Gaussian
process with average zero. This implies, in analogy

1199
with (23)-(26) that
M, @) =0, (44)
(o (£ B, (5)) = 2Q1,5,,8(t — s), (45)
“2n—1"2n-1(82”'1) T M“1”1(81)> =0 (46)
(Mpznyzn(sz,,) e Mpl,,l(sl))
1 <« ~
= M .
2! pes,, I “p(zj)”p(zj)(sﬂzf )
M“p(zj-l)“17(2:’-1)(31’(27"1))>
__1 '
" 2mn! pes,, Hp@i) p) ) pj-1)Vpj1)
X 8(Spj) — Speej-1)- (47)

It will now be shown that the analog to (27) is
L ety =—i 2 MooiCor® = 2 2 @ugoarCon (1)

48
and that 23, @/, 15 Hermitian with nonnegative o
eigenvalues.
Each complex component C_(¢) may be written as
C (1) = ay(t) +ib (1), (49)
wherein a _(¢) and b (f) are both real. M, and
M, () may be written as
Moo =Seqr tiAga (50)
M, (8) =8 (&) +id_ @), (51)
wherein S, Ao Sye (t), and A, (¢) are defined by
Saa = 2 M0 T M3, (52)
Ager = =2 Mo —M,), (53)
Saait) = 5[M o, () + M7, (1), (54)
A, (0 =—3[M, @& — M, ®)]. (55)

With (43) it is seen that S_,, A, Syq (), and 4, (f)
are real matrices and that S, ,,and §_,(f) are sym-
metric, while A, and A, ({) are antisymmetric.
Using (49)~(51), (42) can be rewritten as

p (aa(t)> . ( A, sw,> <aa,(t)>
dt ba(t) —O":l "saou Aaa' ba'(t)

N A @) S .\ /[a,l
. ( oo (8) w())( a(>>' 56)
w1l \=8..,(8) A, (8)/ \b,, ()
Note that (ﬁzﬁ; ) is a column vector with 2N real-
valued components. Denote it by a;(f), where

ag(t)=ag) forp =1,2,...,N (57)

and

ay(t)= b, () forp=N+1,N+2,...,2N.
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In the same spirit, A’ g Will denote the antisymmetric
matrix

( A SW>
'—Saou Aaa/

where
Apg, =Agy, forp=12,...,NandB' =1,2,...,N,
Afg, =Sy forg=1,2,...,N
and 8’ =N + 1,N + 2,...,2N,
Ayg, =S, yp, forB=N+1,N+2,...,2N
and B’ =1,2,...,N,
and
Afg, =Ag gy forp=N+1,N+2,...,2N
and B’ =N +1,N +2,...,2N. (58)

In a similar manner, define the 2N X 2N real anti-
§ymmetr1c matrix Ag ,(t) in terms of S or(2) and
). With these defm1t10ns (56) becomes

v

——a’B(t) = BZZ].A B Br(t) + Z; Aﬂﬂ/(t)alel(t)i (59)

which is a special case of (22).

In order to get the analogue of (27) for (59) it is neces
sary to determine the matrix Z}val Qg gop, defined by

2 (A o)Ay, (s) = 2 Z; QU oes/0(t —5).  (60)

The left-hand side of (60) is computed by using the
definition of Agg,(#), (54), (55), and (45), in that order.
The computation is straightforward and somewhat
long. The results are

1 N N

’ ’¥
3 <92:1 Qpeepr T eZ=>1 Qﬂeeﬁ'>
forp=1,2,.

» 25> z
Qaos =~ (3 @ossrn— Z @bon-n)
o BoOBY 2 o pees Beep’-

NandB' =N +1,N + 2,.

2N

% Qooss = -
64 Boos/

sNandB' =1,2,...,N;

forp=1,2,...,

<E Qs -N668r E QB Neeaf)

for=N+1,N +2,..

..y 2N;

2N (61)
2 Qhees =— 35
& Yeoos

,2Nandg’ =1,2,...,N;

N N
1
Z} Qpo0sr =~ §<GE:1 Qp-no6sr-N ;231 ngesrw)
for=N+1,N+2,...,2N
and3’ =N +1,N +2,...,2N,

At this point, the use of (49)-(51) and (61) leads to (48)
if one notices that

2 Qaeea' = (E roeeou E aeew)
N
—1 _<E Qaeea/ - GZ}I &Taew); (62)
where
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1
i(z Qaeew + E QaOSw)

and
. /N N
Z 14
-2—<OZ=%. Qaeew - E Qaeea'>

are both real matrices. Therefore, it has been justi-
fied that (42) and (48) are a special case of (22) and
27).

Via (45) it is seen that

E Z} Z; y Qaeea/ya/

o o

= E E 2 23} Q&eea;ya: fo 6(t - S)dS

—% }:3 > fo oA M o(HYM g, (S))y,,ds
(g s
= 0. (63)

Therefore, Ee @400+ has nonnegative eigenvalues,
and with (48) it is seen that the quantity 25, (C(£))
{C,(t)) shows a monotonic decrease to ethbrlum,
whereas from (42) it is seen that the quantity Z} Cr(t)
C (t) is a time invariant. These results are analogs
of (41) and (3'7), respectively.

7. COMPLEX BILINEAR FORMS
Starting with Eq. (42), it is possible to define the mat-
rix p4(t) by

Past) = CHOC,(0) (64)

and to ask what the time dependence equations for
Pos(t) and (p 4(t) are. One gets from (42)

. d =

l cﬁpaﬂ(t) = ? BZ; (L(xﬂ(xlﬁl + Lagwsf(t))ng,(t); (65)

wherein L, .5, and L 5,5, (t) are defined by

Logarsr = 0q0Mgg, — GBBfM:w’ (66)
Logars(8)=0,0,Myg, () —050,M7% (). (67)

Note that (43) implies that
L *

aBosBr

=L and Z;Balﬂl(t) =Ea/ﬂ:a5(t)- (68)

a’BraB

Both indices a and 8 range over 1,2,...,N. There-
fore it is possible to think of p_,(f) as an N2 com-
ponent “vector,” and to think of L ,;.,5, and
Lgqarg,(t) as N2 X N2 “matrices.” Equation (68) sug-
gests that these two ‘‘matrices” are Hermitian. Equa-
tion (67) shows that L , ,,(f) is a linear combination
of two purely random, stationary, Gaussian processes
and is, therefore, itself a purely random, stationary,
Gaussian process. Consequently, in this way of view-
ing (65) it is seen that (65) is a special case of (42),
as well as being derived from (42). Therefore,

(p s (¢)) will obey an equation which is the analog to

(48).
In order to get the equation for (p «s(t)) it is neces-
sary to obtain the analog of Ee QLe0os Which appears
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n (48). Comparing (65) with (42) it is seen that one
needs the analog of (45) which is

<zaBalB'(t)f’uuwu'(s)> = ZQ;Ba/smuwwé(t —s). (69)

In order to explicitly determine Q&Ba,a,“ww,, one
uses (67) and also (45). The exercise of a little alge-
bra yields

*

Q:xﬂouﬁ’pup/w = Gaaléuu'QéB’uu' + Gﬂﬂléuu'sza/pp/
’ ’

~6aa/6yleﬁB/p/p _GBBIGpp/Qalayyw (70)

Therefore, renaming indices leads to the analog of
2Je @60 Which is

— ’
Z; Z) Q&ﬂeeleelalﬂ/ - anl Z; Qﬂelerﬁl
6 6/ er
* ’
+ 6Bﬁ’ %) ;LGOOL’ _QBB’OC’OL - :x'otBﬁ" (71)

Use of (45) shows that

;c)’(;ea’ = Ieacxle' (72)

If the left-hand side of (71) is defined to be R 5, 5/s
then (71) and (72) give

Rogasr = Vg 2.;/ Qsoes: T Opp: 92 Qoaare
_Qéﬂla'a_Q:x/aBB" (73)

Consequently, the analog to (48) is

d .

ar <paﬁ(t)> =—1 aZ} BZ') La5a15:<Pwﬂr(t)>

_g; BEIRaﬂwB/<pw5r(t)> (74)

The analog to the proof to (63) may be applied to
R gqa, by using (69). Therefore,for an arbitrary

matrix X 4, which is thought of as an N2 component
“vector,” it follows that
E E Z; EX;BROLBOL’B'X&'B' = 0. (75)
o B o’ B

Thus the eigen-“vectors” of R g,,,, are really the
eigenmatrices of a tetratic, and the eigenvalues are
nonnegative. The case of a zero eigenmatrix, or
eigen-“vector,” is realized by using (69) and (67)
which show that the identity matrix & _,,, is an eigen-
“vector” eigenmatrix with eigenvalue zero:

aE, BZ; Eaewaf(t)_bafs'

= az} g-:l [Gaa'MBB'(t) - 6BB'M:a'(t)]6a’B/

= Mﬁa(t) — M;B(t) =0. (76)
Therefore, it also follows that

I RogorgOargr = ? Ropeo = 0. ()

ar B’

The symmetry of R ,5,5,, Which follows from (69),
implies

%;Reewef =0. (78)

Therefore,

1201

G D = =i DD D Lol )

o ol

— 2L DR Py, ) =0 (79)

a o’ B¢

because of (78) and a result like (76) which follows
from (66):

Z) Laa_alﬂl = Z; (baouMaB/ - 6a51M* )
=3 o

ool
=M —M*, _,=0. (80)

B’ Brar

Therefore, 25, {p,,(!)) is a conserved quantity.
Nevertheless, (75) guarantees that (74) shows irrever-
sible behavior.

8. PURELY DIAGONAL BILINEAR BEHAVIOR

Again starting with (42), it is always possible to per-
form a unitary similarity transformation which
diagonalizes M, since M, is Hermitian. M, (¢)
in the new representation will not necessarily be
diagonal, but it will still be Hermitian and a purely
random, stationary, Gaussian process. Therefore,
without loss of generality, (42) can always be trans-
formed into the form

i %Ca(t) =dc(t) + > Maw(t)cw(t), (81)

wherein the d, are real numbers. This is equivalent
with saying that M is diagonal and is given by

aa’

M., =dp0

[o Ao 1: 20

(82)

The program of Sec. 7 can again be carried through
with the simple modification that

L =6 M 0,., M*

oo’

B8r
6BB'dB - 666'6

aBarBr B8/

=6 da:(dﬂ——da)éaa,dﬁﬂ,.

(83)

ao’ aa’

Therefore, (74) becomes
é‘it' <Pq5(t)> =—1i (de - da)<pot5(t)>

—z 2R apars(Pars, (E)). (89)

Using this diagonal — M, representation,
(Mg (t)M,,(5)) = 2QLg,,

(1= 6,01 —65,)(1 —6,,)(1 —5,,)]6( —s)
(85)

[GauaBp + Gauéﬂv

is a sufficient condition for the reduction of (84) into
an equation involving only the diagonal elements of
(p,5(t). The Kronecker delta factors in (85) require
that either «, 8, u, and v are all different, or that
eithera =Borpu=v,ora =vand 8 =p,0r a = p
and B = v, in order that the over-all quantity be non-
zero.

Sufficiency is demonstrated by using (85) in place of
(45) in the calculation of R 5.,5, as determined by
(73). This is equivalent with replacing the occur-
rence of @4, in (73) with @[, [6,,6,, +6,,5,,
(1 —=06,,)01—=08,,)%x(1—56,)1—5,)]. The re-
sult, after a modicum of computation, is
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RocBoc’ﬂ’ = 50LOUGBB'<§; QEGSB' + %; Qleocoue

+ Qbpps T Qoaca) ™ 290 asp/ (0080 0s/

+ Gasﬁalﬂl + (1 - 6(1[6)(1 - aaﬂ/)

X1 —=38,)(1~06,4,)] (86)

Note that (86) implies that in order for R wer = 0
then
=8 ifandonlyif a' =p". 87
Consequently, the expression for R 5.5, Biven by
(86) will reduce (84) to an equation for the diagonal

elements of {p_,(#)) only. Define P_(t) by
P ()= (p (). (88)

By using (88), the diagonal equation resulting from
(84) is

d

Pl =T WeoPo ) = Wo o PO) (89)
where W, is defined by

Wi = 2@ qoar- (90)

Equation {90) holds because (86) leads to the result
Recwar = O D 2Quosa — 2Quaars 1)
Returning to {45) it is seen that
W, = 0. (92)
In addition, (79) may be rewritten using (88) to yield
2 TP H=0. (93)

9. FOKKER-PLANCK EQUATION

Because the stochastic “driving force” for the multi-
plicative stochastic processes presented here is
always characterized as a purely random process, as
well as a stationary, Gaussian process, the resulting
over-all stochastic process is a Markov process. In
this section, the Fokker-Planck equation which fol-
lows from the Markov property will be presented for
the real N-component case. As was demonstrated in
Secs. 6 and 7, the complex N-component case and the
complex bilinear case are special cases of the real
component case. Therefore, the Fokker-Planck equa-
tion presented below for the real component case is
sufficiently general to cover all of these cases.

The Markov property alone does not necessarily lead
to a Fokker—Planck equation, The following condi-
tions are also necessaryl4:

Lim (1/a1) (a,(at) —a (0) = A [a,(0) - - ay(0)];

lim (1/a8){[a (at) — a(0)][ag(at) — a,(0))

Faad
Ao = B_,[2,(0) - ay(@]; &9

1 = —
im = ]'111 [aaj(At) ——aaj(O)] =0 form =3,

D

These conditions do indeed hold for the real N-com-
ponent case as may be rigorously verified by appli-
cation of the techniques developed in the Appendix for
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the solution to Eq.(22). Moreover,A , and B, are
explicitly found to be

N N
Aa(al AL aN) = E (Acxa' + E Qa99a1>aa/i (95)
or=l 6=1

N N
Buplas @) = 2 03 2Quass oty (96)

Using (95) and (96) when (94) is true for a Markov
process leads to the Fokker-Planck equationl4:

aa-tP(al(O)--- ay(0)la, - - ayt)

N N 32 N N
22 dada (
a=l B8=1 a’ 8 \Nar=1 B/=1

X roa;aﬂ/aa/aﬂlp(al(o) tre aN(0)|al o aNt)>)
(97)

where P(a,(0)- - - ay(0)|a, - - ayt) is the probability
that a,(f) = a,, a,(t) = a,,...,and ay(t) = a, at time
t > 0 if it was the case that a,(t) = a;(0), a,(t)

=a,(0),...,and ay () =ay(0) at t = 0.
Define R, by
Rota' = ? Qaeew' (98)

Equation (40) shows that R
values.

«os Nas nonpositive eigen-

By using (98), the summation over repeated indices
convention, and leaving out the explicit a, dependence
of P leads to

d d

ﬁpz—m[(A +R )aa,P]

oot
92
+ ja3a, [Quarss@ars, Pl (99)

oot

Equation (37) implies that 2}, {a2(t)) is a time in-
variant. This property may also be seen directly
from (99). Averages are given in terms of P by

@, = [aPla, (0 ay0la -

aytyda, - - day,
(@ ®agth = [a,a,Play(0): - (100)
ay(0)lay---ayt)da, -+ - day.

Therefore, using (99) leads to
d 2
7 I a2
a
= f%}agﬁPdal"'daN
a
= f Z) agul da [(Aaou + Raa')aa'P]dal T daN
ot a

22
+J az % 5a_ga, Quarsp@ads Plday - day
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=2 [a A, *R

oo’ OLCt’)

a, Pda, - day

+ 2 IGQBQaa/BB’aa/aﬂ/Pdal P daN
= 2Ra0u<aa(t)aa/(t)> + 2Qaa,aﬁ,<aa,(t)a5,(t)>

=2R_ la (Da,, ) —2R 4 e, Bag @) = 0.
(101)

The first equality follows from (100), the second
equality follows from (99), the third equality follows
from integration by parts,the fourth equality follows
from (100), and the last two equalities follow from
(98) and a renaming of indices. Therefore, it is seen
that the time invariance of 27, {a2(t)) is guaranteed
by (97) or (99). Similarly, in the bilinear complex
case, the time invariance of 25, {p . (t)) will be
guaranteed by the corresponding Fokker-Planck
equation.

A discussion of the solutions to (99) for general N
will be reserved for a sequel to this paper. Here it
will suffice to present the complete solution to (99)
for the Kubo oscillator which is a one complex com-
ponent case, and as was proved in Sec. 6 corresponds
with a two real components case.

The Kubo oscillator is described by Eq.(12). Write
a(t) as a(t) = a,(t) + ia,(t) where both a,(t) and ay(t)
are real. In this way (12) becomes a special N = 2
case of (22), where

A :<2 —§> and A = (Z(t) —o&(t)>’

=A0,10,,205105:2 +8,204,105205,1
- Galéa'263263’1 - éazoa/155165'2)' (103)

(102)

Qaa’BB'

From (103) it is easy to compute R
(98) and this gives

—A 0
R- ( )
0 —x
Using (102)-(104) in (99) for N = 2 gives

d a a a 0
a—tP —w<%:ay —a—a;ax>P +A<§a—ax +a—-a;ay>P

x

as defined by

oot

(104)

a7 % axay>P. (105)

2 2
+A<—a—az+aﬁza?—2
aay .

oa aay

At this point introduce polar coordinates: a, =v cosf
and a, =7 sin@. This implies

a 9 sing o
sa, =~ 05— 50
., 0 cosd 0
and E—Sm937+ > 58" (108)

Using (1086) in (105) leads, after a modicum of algebra,
to
2
a-P:—u.:iP+)\—a—P,
at 00 262

where P = P(r(0)6(0)!76¢) and P(r(0)6(0)|r60)
=6(r —#(0))6(6 — 6(0)). From (107) it is seen that
P may be factored,

(107)

P(rot) = R(rt) W(ot), (108)

1203
and (107) becomes two equations:
a—R(rt) =0 and
at
D Wity =—w W, +r 2w, b). (109)
ot a6 262

With the initial condition for P given beneath (107)
the solution to (109) for R is R(rt) = 6{r —7(0)]. The
solution for W(6,t) with periodic boundary conditions
is given by

w,t) =

1 f’) exp(_ (6 — 0(0) + 2K — wt)2>_
Vamt k=—w 4rt

(110)
This describes a diffusion process on a circle coup-
led with a streaming term given by wf{. The complete
solution to (105) is then given by

B _ 1
Plr(0)p(0)|76) = o[r —7(0)] ==
% " [9.—6(0) + 2K7 — wit]2
X K;Jw exp( Y ) (1)

It is possible to use (111) to reconfirm (15).

10. CONCLUDING REMARKS

The physical implications of the equations presented
in this paper are relevant in the areas of nonequili-
brium thermodynamics and nonequilibrium statistical
mechanics. A fuller treatment of the appropriate
physical interpretations for these equations will be
presented in a sequel to this work. For the present
it will suffice to indicate several immediately ob-
vious points.

Additive stochastic processes have been used to
explain Brownian motion by Langevin's equation, to
explain nonequilibrium thermodynamics close to full
equilibrium by the Onsager and Machlup equations,
and to explain these first two cases, as well as the
fluctuating hydrodynamic theory of Landau of Lifshitz,
and the fluctuating Boltzmann equation, by the general
theory of stationary, Gaussian, Markov processes
presented by Fox and Uhlenbeck. All of these cases
are limited to dynamical behavior near full equili-
brium, and all of these cases are classical.

Multiplicative stochastic processes, as presented in
this paper, suggest physical applications in the follow~
ing cases. The most simple case is the case of fre-
quency fluctuation for the harmonic oscillator, as was
originally proposed by Kubo. The generalization to
the real N-component case as given by (22) and {27)
corresponds with the Liouville equation with a Hamil-
tonian that contains a fluctuating contribution to the
overall energy.? Equation (22) is the matrix repre-
sentation of the partial differential equation which
provides the classical Liouville description. The
complex N-component case corresponds with the
Heisenberg matrix representation of the Schridinger
equation. Equation (42) is the relevant equation and
contains a Hamiltonian which has a fluctuating con-
tribution. Averaging (42) leads to (48) which depicts
the decay of total probability as may be seen using
(63). In order to avoid this physically unreasonable
consequence, the density matrix formulation is pre-
sented by Eq. (65), and (74) corresponds with the
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averaged density matrix equation. Equation (79), in
contrast with (48) and (63), implies conservation of
total probability, even though (75) guarantees that
(74) describes irreversible behavior for the whole
averaged density matrix. In the literature (74) is
referred to as the Redfield equation.® Here, the poten-
tial physical applicability of (74) is greater than the
nuclear magnetic resonance context usually associa-
ted with Redfield's equation. In the special case in
which (85) is realized, the Redfield equation (74) is
seen to reduce to (89) and {92) which comprise the
Pauli master equation for the diagonal elements of
the average density matrix.15

All these cases show that multiplicative stochastic
processes pertain to both classical and quantum
mechanical considerations. The restriction of addi-
tive stochastic processes to physical applicability
corresponding with dynamical behavior close to full
equilibrium does not apply to multiplicative stochas-
tic processes. This follows from the difference in
the levels of description each case involves. In the
additive stochastic process case the description is
relatively macroscopic such as in fluctuating hydro-
dynamics, in the fluctuating Boltzmann equation, and
in nonequilibrium thermodynamics. These levels of
descriptions are usually nonlinear; but their linear
approximations are required in order to obtain their
stochastic description. The linearization step re-
quires the restriction of applicability to near full
equilibrium. In contrast, in the multiplicative stoch-
astic process case the description is relatively
microscopic such as in the fluctuating Liouville equa-
tion and in the fluctuating density matrix equation.
The levels of description are intrinsically already
linear, so that no linearization step is required, and,
consequently, there is no corresponding attendant
limitation to physical applicability.

The possible limitations to physical applicability of
multiplicative stochastic processes arise with res-
pect to the validity of introducing a part of the total
Hamiltonian which is a purely random, stationary,
Gaussian process. This consideration will be iaade
in detail in a sequel to this work which stresses the
physical context. For the present, simply note the
existence of the rigorous theorem, the proof of which
is found in the Appendix and the consequences of
which are found in the text, for multiplicative stochas-
tic processes “driven” by purely random, stationary,
Gaussian “forces.”

ACKNOWLEDGMENTS

The author is indebted to Professor Mark Kac and
Professor George Uhlenbeck for their critical review
of this work just prior to its final written rendering.
The author is also indebted to the Miller Institute for
Basic Research in Science for supporting this work
during its inception while the author was a post doc-
toral fellow of the Miller Institute and associated
with the Physics Department of the University of
California at Berkeley.

APPENDIX: PROOF OF EQ. (27)
Define R (f) by
Ra(t) = Z; [e_At]aouaa'(t)’

ol

where A denotes the matrix with components A __,,

(A1)
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and

[ ]qou Z)() n. )aa,tn.

n

Also define L, () by

L= %) BE [eA]0pd 55, ()] €A - (A2)
Via (A1) and (A2), (22) may be written as

TR = D Lo OR,,0). (A3)

Because L(t) and L(s) do not necessarily commute for
t = s,(A3) must be solved using time-ordered integ-
rals:

Ra(t)z?léofot fok.1 0 52
L IDPEDVREEDHD Y

g1 Hi-2 Fa My

% L““k-l(sk) L“k—l“k—z(sk'l) o L“ 2;1‘(82)

X (sy)dsy +--ds,R ,(0),

ua'

(Ad)

where ¢ = s, =s

T= 85, =
Wk ,(2) by

-1 §, = 0. Define

“k—

X ”21) <f,apk_l(sk) e

Equations (25) and (A2) imply that

Zﬂla’(sl»dsl‘..dsk' (AS)

(ty =0 for all odd k. (A8)

Ota’

Consider all even &, such that 2 = 2m form = 1,2, -+
Notice that Eqs.(26) and (A2) imply that

A O EELD AR O

Hom Y am
> i
T amp) pESyy 7L

[

)

“P(?J)”p@])( #27)

x L (AT)

S.r .
P p(2j-1) l’1)(21’-1)( p@j- 1)» ’
where

(L)L, (50
=D T DT (erd,

a o B B’

~aa,(s) [eAs]ou v
X [e-As,]u ’BABB’(S,)[eAS,]ﬁIu)

=2 E Z; BE Bz; [e_As]pa[eAs]a'uQaa’BB'

x o), o[eA]y 008 — ). (a8)

In particular, (A8) leads to
%) (L,e(8)Lg,(s'N
=272 [e4], 2 Quooa/[€8%]5,0(s —s). (A9)

a B’

Using (A7) in (A5) for & = 2m gives
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Z) DIDIEE E
By Vg
5. 1 1
Ay Oy p=l TRl gmpy pESy,y, 171

x (L

acc’(t)_fo 0 e

X8

L
“p(zj)”p(zj)(sﬂzﬂ) ¥ p(2j-1)"p(2j-1)

x (s p(2]—1))> dsy -+ ds,. (A10)

Using (A8) in (A10) gives

t

Wk = [, Z) Z) 2 E

1 Vg

k1 1

6 —

Wp 0y =l Maf 9mp ) pes,,

m ~As, (;

x I1 e "pej)
SEE D),

=1a]. af B; B}

X § 2m

.

As .. =Asyo;
x [¢76)] Qujase8:l€ PN psm8

’ .
%3 ¥pi) %%

As, 2-)
x [e" pCi ]E;Vp(gj-l)a(sp(zj)

(A11)

This complex expression for W ,(f) reveals its inner
structure and leads to major simplifications. Define

faot'( Sl) by
M ACERCE Z) DIDIEE
By Vg
XY 6 kﬂl nrxon
v “Pk Wy g=1 "m“z il a8,
R R |

X 33 [e A%

As (2j
} a.[e ]OL’II (2])

B p2j)%j
s.l€

Ppej-n¥j

-As, . As . .
. p@7) (i), Al2
;o8 ;8] [e ] ]ﬁj“p(zj—l) (A12)

for each p € S,,,. Therefore, putting (A12) into (A11)
gives

1 Eors
Wk (t) = m e
aoc'() 9my, 1 pgs;z 2 fO 0
JEE (S sy) ]Hl 8(Spaj) — Spzj-1)
X dsy - ds,. (A13)
Now, define k¢ (¢) by
t Sy
1x,0=fo fo'+ fo fEL,(s " 59)
m
X I1 0(Sg@jo1) = Syj-1))d81 "~ ds,  (Al4)
for each g € S,, . Let the set N be given by
_ m
N=1{g €Syl I 055055 = S0-0)
contains the factor &(s, — s,_,)},

and let the set Z be defined by

m
Z =10 € Syl 11, 8(5y05) = Sq2j-1)

does not contain the factor 5(s, — s,_;)}.

Clearly, Z contains ¢'s such that IT7%) b(sq(zj)~sq(2j_1))

— sp(zj_l))ds1 veeds,,
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contains the factor 6(s, —s,) for I = k —1. Since the
order of the two time arguments in a delta function
does not alter its value, and since the order of the
delta functions in a product does not alter its value,
then there are 2”m ! permutations in S,,, which yield
identical I17% 6(S,;) — S4zj-1)- The number of per-
mutations in N is 2m[(2m — 2)!]; because there are
two ways of ordering s, and s, ; in 8(s, — S,), there
are m ways of ordering the product with respect to
the factor (s, —s,.;) and m — 1 other factors, and
there are (2m — 2)! ways of permuting the remaining
2m — 2 time variables. The number of permutations
in Z is 2m(2m — 2)[(2m — 2)!]; because there are two
ways of ordering s, and s, in &(s, — s,), there are m
ways of ordering the product with respect to the fac-
tor 6(s, — s,) and m — 1 other factors, there are

(2m — 2) ch01ces forl = k — 1, and there are (2m —2)!
ways of permuting the remaining 2m — 2 time vari-
ables. In summary, it follows that S,, =N U Z,

NN Z =@,and (2m)! = 2m[(2m — 2)!] + 2m(2m — 2)
[(2m — 2)1]. I g(s,s’) is an arbitrary function of two
time variables, then the preceding counting scheme
leads to

m
2}11 8082y Sz € N
7 €8y, 00,
(A15)

Each term on the left-hand side of (Al15) is redundant
2m times if g(s, s’) is symmetric insand s’. A
special instance of (A15) is: {17 6(s,;) — Sya-1))!
q € Ny ={8(s, — s,-1) 17831 8(5, 55y — S, 2j-1)|

7 € Sy,,51. Equation (A15) will be useful later, and
the redundancy factor 2m should be noted.

Using (A14) in (A13) gives

m~1
= 3g(sk, sk—]_) jI_—-Il g(sr(zj) - sr(2j-

1) = mlkp (¢
aal( ) 2mm' pes 2 Iaa;( )
=— E 1% () + — 25 I%9,(2). (A16)
m! m! qEZ
It will now be shown that
I*3,(t) =0 for eachq e Z. (A17)
Because g € Z,
t
1%2,@t) = fo fo FE& (s, s9)
X 6(s, ~5)6(s,.; — ;)
ml
X T1 0(Se@j) = Sy25-1) 481 "+ ds,s (A18)
m’ s »
wherejT:I1 6(Sq(2j) — Sqzj-1)) 18 defined by
m
L 8(sg25) = Se2j-1)
m,
= 0(sy — 9)0(sp-1 — 5) 11, 0(Sy2) — Sac25)-
(A19)

Recall that ¢ € Z implies thatl = & — 1. Therefore,
there is some i suchthati = 2 and ¢ =/ and
6(s,.; — s;) appears as a factor in the product
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N7y 608,25y —
d %-1
dt Igg,(t) = fo fo

X 8(t —s,)6(s,4
X dsl e

Su2;-1)- Note that I*2,(0) = 0 and

fo Fke (s, qy.00r8y)

—s) jl;ll o(s Su@ j—l))

(A20)

q2j)
dsk_l.

The time ordering of the integrals requires that

tzs, = =5 (A21)

= v zszzslzo,
The only singular contributions to the integrand of
(A20) are in the product of delta functions since
fke,(¢,S4-15...,5¢) is a bounded integrable function
as is seen from (A12). The integrations in (A20) are
performed in the order ds, dsz, cevsdS, 1 After the
ds; integration, the 6(3,,_1 —s,) term will no longer be
present and the functional dependence of the remain-
ing integrand will no longer be singular in s, ; be-
cause no other delta function besides 6(s, ; — s,) con-
tains s,y or s;. For all' s, ; <{,the §(f —s)) term
and (A21) imply that the integrand is zero. There-
fore,only s, ; =t can contribute to the over-all inte-
gration with respect to s,_,. Thus, when the ds,_,
integration is finally performed, the remaining inte-
grand is zero for s, ; <{ and is not singular in s, ;
anywhere in the interval [0, ¢]. Therefore, the Rie-
mann integral over ds,_; from 0 to { gives zero. This
proves that for q € Z, (d/dt) 14 ,(t) = 0. Coupling this
result with 1#4,(0) = O implies that for each g € Z

I*4 (¢) = 0 for all {£. Consequently, (A17) is proved.

oo!

Returning to (A16), (Al7) implies that

aal(t) = a1 Z} Iqal(t) (Azz)
Using (A12) and (A14) yields
q? 1%¢,(8) = E fo fo fo fE (s sy)
X jr:ll 8(Sg(zj) ~ Sa(zs-1) 451" " 4,
t s,
=2 [ NSO IIDIIDD
a€N Fe Fpa Yk Ve
>.<M§2 #ZR u:L—-) “Zf e Uk“k-lbwul
k-2 -As
x 11 6 PIEDIEDY: (e k]pkam

1 YMnbl o, o, 8, 84,

As, -As
X [e k]a;n quocma;anB/n [e k}

m=-1
x[e*),, , T2 5%
mEL I oy a8y 8

Fp1 B

x [ehuen), o feten),,

Ha(2i)%j q(2J)Q°‘ 6,8

As (o,
8 [e %9(2j )] By

-A .
X [e "9()
[ ]“q(zj-x) ¢ q(2j-1)
m//
x 0(s, = $-1) IL 6(8yc04) = Sp2i-1)

X dsy e ds, (A23)
wherein 177 8(s (5 ;) — Sy2:-1)) 15 defined by
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m
11 6(See2i) — Sqc2i-1)

il

my,
8(Sy = Sp-1) 11008425y = Sy i-1))-

If
k-2 &3

Ins =6 ITs
=1 Unbg Vpribp-2 121 Vnky

and (A15) are used, then the expression in (A23) be-
comes

Sk Sk_ S.
Z Iaou t) = 2m Z) fo T, 'foz

2m2

XZ}Z}E[ASk]aa EQaGOB’

Vo S Bl e
X [eAS”]B;",,k_lﬁ(sk — Sp-1)
PO IEETD DD PIEEE
K2 1 Vp-p
X "Z1> ‘Suk_luk_zéwul I:Y-:I: Yty 7:11
XD L D),

1
o aj B]- ﬂj

As. (. ;
x [e™ i)
[ ]°‘3 Ur(2j )Q a;078;8;

x [e"sr(z])]

Sr(2j)
Ky 2j=1)P ][ Jﬁ] r2i-1)

m=1
x 11 5(S, 24y — Sp@4-1)) 451

X ASypdS, 1ds,. {A24)
The factor 2m comes from the redundancy require-
ment discussed following relation (A15). Because

¥ € S,,,-5, it also follows that

my m-1

1L ey = Sqei-n) = 1L 008,005 = S,25-n) for g € N,
and this has been used to get (A24) from (A23).
Using (A12) for £ — 2 shows that (A24) is equivalent

to

oIk, =2m fo

gEN 7 €S, o m—-2

Z)ZJZ)

Vpy G By

[, E Qa6,0,8,¢" Mg

B iy
X6, =S4 fok_ "foz

$3) r}l 5(S,(24) —

k27
Vg o

X (Spg e S i-l))

X ds . dsk_zdsk_ldsk

Z hld s T D™,

ESym~2 Vg1 Cm B

X 27 Qq
O

=2m

66,810 4 PUP

m m-mT™m
X (s, — Spq )Iuk 7(Sp1)ds, 1ds,. (A25)

The second equality in (A25) follows from (A14) for
k—2.
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By using (A13) and (A14) it also follows that

Iukzlzf(sk-l)

1
k-2 =
W2 wlSe1) = =y regm_ (A26)

because k# — 2 = 2(m — 1). Now, if one last quantity
o yk-l(sk) is defined by
—As As
auk I(Sk) - :Z—:/n BZ; [ k]ocam GZ> Qo‘mememﬁr/n[e k]B,’nd_l’
m
(A27)

then together with (A13), (A14), (A25), and (A26) this
leads to

Wea ) =2 25 o s "N, (5005, = 5,)
k1
X W’sz_ w(Sp-1)ds, 1ds,
= E fo No,, (S)WE2 o(s)ds,, (A28)
k1
wherein the ds,_; integration with 6(s, — s,-;) in the

mtegrand and s, as an integration limit introduced a
factor of 3 which cancelled the 2. By differentiation,
(A28) gives

d

T (A29)

We () = 2 N,
Vg1

By returning to (A4) and (A5), (A28) permits the

writing of

b (W2 ),

GRO =T 5§ W, (OR 0
k=0
=T % 5 W ORO)

1207
= aE Z_}l %} N, () W2r-2(t)R ,,(0)
= Z) N,, aZ) mEO w2n (R, (0)
= Z) N, (R, (@t). (A30)

Using (Al) and (A27) finishes the proof of (27) with
Aot =23 Ao lag, ) + 20 20 Queparlay ().
o a’ 8

It should be noted that this result is equivalent with
the statement that the time-ordered integrals which
arise in the formal solution to (22) yield nonzero
quantities upon averaging, only if the product of delta
functions which occurs is “properly ordered.” By
“properly ordered” is meant that

m

T 808525y — Speas 1))— 8(Se2j) —

S@j-1) (A31)

since H]?'l:l 6(3(2].) — S 2]._1)) in the integrand of the
time-ordered integral leads to a nonzero quantity,
whereas any other pairing of time variables leads to
zero. Therefore, only permutations which satisfy
(A31) give “properly ordered” delta function products.
In the proof presented here this property has been
arrived at by “peeling off” two time variables at a
time, and noting that to get a nonzero result that the
two time variables “peeled off” were “properly
ordered” relative to all possible time variables.

Reference to these properties of “properly ordered”
products are made in Sec. 9 with respect to rigorously
justifying the Fokker—-Planck equations given in that
section.
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I. INTRODUCTION

The presence of Coulomb interactions in an infinite
lattice has a marked effect on its lattice dynamics at
long wavelengths. Neither the dynamical matrix nor
the phonon dispersion relations have well-defined

values at infinite wavelength for such lattices. In fact,

in some cases, a branch of the dispersion relations
will not even approach a definite frequency (indepen-
dent of the direction of the propagation vector) as the
propagation vector approaches zero.! The standard
methods of group theory used to analyze the behavior
of the dispersion relations at long wavelengths must
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By using (A13) and (A14) it also follows that

Iukzlzf(sk-l)

1
k-2 =
W2 wlSe1) = =y regm_ (A26)

because k# — 2 = 2(m — 1). Now, if one last quantity
o yk-l(sk) is defined by
—As As
auk I(Sk) - :Z—:/n BZ; [ k]ocam GZ> Qo‘mememﬁr/n[e k]B,’nd_l’
m
(A27)

then together with (A13), (A14), (A25), and (A26) this
leads to

Wea ) =2 25 o s "N, (5005, = 5,)
k1
X W’sz_ w(Sp-1)ds, 1ds,
= E fo No,, (S)WE2 o(s)ds,, (A28)
k1
wherein the ds,_; integration with 6(s, — s,-;) in the

mtegrand and s, as an integration limit introduced a
factor of 3 which cancelled the 2. By differentiation,
(A28) gives

d

T (A29)

We () = 2 N,
Vg1

By returning to (A4) and (A5), (A28) permits the

writing of

b (W2 ),

GRO =T 5§ W, (OR 0
k=0
=T % 5 W ORO)

1207
= aE Z_}l %} N, () W2r-2(t)R ,,(0)
= Z) N,, aZ) mEO w2n (R, (0)
= Z) N, (R, (@t). (A30)

Using (Al) and (A27) finishes the proof of (27) with
Aot =23 Ao lag, ) + 20 20 Queparlay ().
o a’ 8

It should be noted that this result is equivalent with
the statement that the time-ordered integrals which
arise in the formal solution to (22) yield nonzero
quantities upon averaging, only if the product of delta
functions which occurs is “properly ordered.” By
“properly ordered” is meant that

m

T 808525y — Speas 1))— 8(Se2j) —

S@j-1) (A31)

since H]?'l:l 6(3(2].) — S 2]._1)) in the integrand of the
time-ordered integral leads to a nonzero quantity,
whereas any other pairing of time variables leads to
zero. Therefore, only permutations which satisfy
(A31) give “properly ordered” delta function products.
In the proof presented here this property has been
arrived at by “peeling off” two time variables at a
time, and noting that to get a nonzero result that the
two time variables “peeled off” were “properly
ordered” relative to all possible time variables.
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I. INTRODUCTION

The presence of Coulomb interactions in an infinite
lattice has a marked effect on its lattice dynamics at
long wavelengths. Neither the dynamical matrix nor
the phonon dispersion relations have well-defined

values at infinite wavelength for such lattices. In fact,

in some cases, a branch of the dispersion relations
will not even approach a definite frequency (indepen-
dent of the direction of the propagation vector) as the
propagation vector approaches zero.! The standard
methods of group theory used to analyze the behavior
of the dispersion relations at long wavelengths must
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be modified when Coulomb interactions are present.?
In this paper we give a mathematical analysis of the
long-wavelength behavior of the phonon dispersion
relations for such lattices. The analysis applies to
point ion models3 in the harmonic approximation.

This work is a generalization of earlier work on
simple cubic lattices? and lattices of the NaCl and
CaCl structures.5

We begin our analysis in Sec. II by forming the dyna-
mical matrix® for a lattice whose particles interact
harmonically through a potential varying with distance
7 as v "?, where temporarily it is assumed that p > 1.
In Sec.II we review some symmetry properties of
dynamical matrices for crystals in which long-range
forces are absent. Then in Sec.IV we show how these
symmetry properties must be modified at long wave-
lengths in the limit of p = 1. In spite of these modifi-
cations, a great deal of information about the long-
wavelength behavior of the dispersion relations for
crystals with Coulomb interactions can still be obtain-
ed from symmetry considerations. These methods
are developed in Secs, V-VIIL. In Secs. VIII and IX we
derive conditions under which the branches of the dis-
persion relations will approach definite frequencies
(independent of direction) as the propagation vector
approaches zero. Finally, in Secs. X-XII several
examples are presented which illustrate the mathe-
matical results developed in Secs. IV-IX.

II. THE SYSTEMS TO BE ANALYZED

Although the primary purpose of this paper is to study
the behavior of the dispersion relations at long wave-
lengths for a large variety of infinite crystal lattices
in which Coulomb interactions exist between parti-
cles, we begin by assuming that, in addition to short-
range forces, the particles interact through potentials
varying with distance v as 7 -?, where p > 1. Then we
assume that lattices in which Coulomb interactions
are present are to be treated by letting p — 1 in our
initial results. The reasons for proceeding in this
manner will be made clear in Sec.IV.

Consider a lattice with f particles per unit cell with
equilibrium positions x(Ik) = x(I) + x(«), where k =
1,2,...,f. We choose a to be some typical dimension
for a unit cell and define the dimensionless equili-
brium position n(lx) by #{lk) = x(Ix)/a. The corres-
ponding dimensionless displacement of a particle
from equilibrium is denoted by u(lk). Suitable Carte-~
sian coordinates are imbedded in the lattice along
which vectors are resolved into components.

The particles interact harmonically through short-
range forces and through forces derived from long-
range potentials. The long-range potentials are such
that the potential energy (due to long-range interac-
tions) of the kyth particle in the zeroth cell is

VI =a?tGY) ZZ,
Lk o

X [Z) (n; k) + w;(Ix) — n;(0ky) — ui(OKO))zJ —p/2i1)
1

The prime on the summation sign indicates that [,k =

0, K, is to be omitted from the sum. In the limit of

p =1, we identify G with the electronic charge squar-

ed and Z, with the fraction of an electronic charge on

the kth particle. Since the net charge per cell is zero,

we set
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22z, =0. (2)

We choose the normal mode solutions to the equations
of motion for the lattice in the harmonic approxima-
tion to be of the form

u; (k) = () 7172% (k, @) exp[2mid e q(Ik) — iw(P)i ], :

where ¢ is a dimensionless propagation vector, w(¢)
is the frequency, and y, = m, /m, where m, is the
mass of the «th particle and m is some typical parti-
cle mass. Substituting Eq. (3) into the equations of
motion, we obtain the following eigenvector equation
giving the dispersion relations and normal mode
eigenvectors for the lattice:

‘JZ% Cyi;(kok |9)T;(k; d) = (@) T (ko; D). (4)

In the above equation A (¢) = a?*2mw2(¢)/G, the ele-
ments Cij(K0K|¢) form a 3f-dimensional, Hermitian,
dynamical matrix? C(¢), and the elements ¥,(x; ¢)
form a 3f-component vector ¥(¢).

We shall order the elements of C(¢) according to the
rule (ikg) < (jk) if ky < k or if k) = k and 7 < j. Such
an ordering automatically breaks C(¢) into /2 3 x 3
submatrices CKo «(¢) consisting of elements with the
same ordered pair kgk;and, at the same time, it
breaks the column matrix for ¥(¢) into three-compo-
nent column matrices (vectors) ¥ (¢). Throughout
this and the following paper, we shall use Greek sub~
scripts to denote such submatrices and use Roman
subscripts to denote particular elements of such sub-
matrices.

We may express C(¢) in the form
C(¢) =C3(¢) + CL(9), (5)

where CZ (¢) gives the contribution of the long-range
interactions and CS(¢) gives the contribution of the
short-range forces. The eigenvectors of C(¢) span a
3f -dimensional linear vector space. We shall denote
this space by the symbol S5, (total).

OI. SOME SYMMETRY PROPERTIES OF LATTICES

Before beginning our analysis, we briefly mention
some symmetry properties which are known to hold
for infinite lattices in the absence of long-range in-
teractions. Here we draw mainly from a review ar-
ticle by Maradudin and Vosko.8 [We have made some
minor changes in their equations because the dynami-
cal matrix C(¢) which follows from Eq. (3) differs
slightly from that used in Ref.8.] The space group
for a crystal consists of elements {RIV(R) + (D}
The 3 X 3 orthogonal matrices R form the point
group of the space group of the lattice (henceforth
referred to as the point group for the lattice). The
symbol n(l) = x(!)/a represents a translation vector
for the crystal and ¥(R) represents a vector smaller
than any primitive translation.

Construct the 3f x 3f matrices A(¢;{R|v(R)}) defined
by

ALk 95 {RIVR)D)
= R;;6(x, Fo(k',R)) exp[— 2niR ¢ *v(R)], (6)

where F,(k’,R) is the index denoting the type of posi-
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tion into which a particle originally in a position of
type k’ is brought by the space group operation. It
can then be shown that

A(p; IRIV(R)})C (o) AT(¢; {RIV(R)}) =

In order to gain information concerning the eigen-
values and eigenvectors of C(0) (the dynamical matrix
at ¢ = 0), construct the 3f X 3f matrices T(0;R) de-
fined by

CR¢). (7)

T,;(kk’|O;R) = R;;8(x, Fy (', R)). (8)
These matrices form a representation of the point
group for the lattice, and it follows from Egs. (6) and
(7) that each T(0;R) commutes with C(0). Thus, by re-
solving the representation {T 0; R} into irreducible
representations of the point group for the lattice, we
may determine the degeneracies of the various bran-
ches of the phonon dispersion relations at ¢ = 0. If
the eigenvectors of C(0) are transformed by the
T(0;R), sets of eigenvectors transform among them-
selves according to these irreducible representations.
The projection operator to the subspace of S5 (total)
spanned by eigenvectors transforming according to
the sth irreducible representation is given by

(n,/8) E x9¥(0; R)T(0; R), )

where x{s)(0;R) is the character of R in the sth irre-
ducible representation, g is the order of the point
group for the lattice,and # is the dimension of the
sth irreducible representation.

Let C,,(0) be a 3 X 3 submatrix of C(0). Because of
the invariance of the total force on any atom under a
rigid translation of the crystal, these submatrices
must obey the relation

2 BC, 00 =T 14/2C,, (0) = 0. (10)

PG)(0) =

The existence of three independent acoustic modes
follows from this property. Finally, we point out that
C(0) is a real, symmetric matrix.

IV. BEHAVIOR OF THE DYNAMICAL MATRIX AT
LONG WAVELENGTHS ASp — 1

The elements of C5(¢) are analytic functions of ¢,
since they are given by finite sums [of the same form
as in Eq. (A1)]. In Appendix A we list expressions
for the elements of CZ(¢), which are obtained from
Eq. (1). The elements are not analytic functions of

¢ at ¢ = 0; however, expansions for them about ¢ =0
may be obtained by using Ewald's method.! These
expansions are in the form of a nonanalytic term plus
a power series in the components of ¢ and are dis-
cussed in Appendix B. From Appendix B it is easily
seen that if 1 <p < 2 Jor 1 < p <3 for C(¢) real],
then the behavior of C(¢) near ¢ = 0 is given by

C(¢)

where the remainder can be neglected for sufficient-
ly small ¢. The matrices A and N(¢) are real and
symmetric. The matrix N(¢) is composed of 3 x 3
submatrices N, (¢) defined by

N, (@) = (b, 1722, Z,L(), (12)
where

=A+ k¢P’1N($) + remainder, (11)

1209
¢ 019 9103
L(¢) =02 |10, ¢3  ¢a2¢3]. (13)
b103 ¢303 3
The constant & is defined by
D(—3b + 3) a3
k= Zpﬂpﬂ/z A ey ' 2] &7 14
TEp+1) Y’ )
where v, is the volume of a unit cell and a is the

typical cell dimension introduced in Sec. II.

If p > 1,then the term k2 IN(¢) in Eq. (11) goes to
zero as ¢ approaches zero. Thus, C(0) is well defin-
ed by C(0) = A, and A has all of the symmetry pro-
perties of a dynamical matrix at ¢ = 0 discussed in
Sec. OI.

In the limiting case of p = 1, the term kp»-IN($) is
not defined at ¢ = 0. The value approached depends
upon the relative rates at which ¢ and p approach
zero and one respectively, and upon the direction
from which ¢ approaches zero. Thus, the dynamical
matrix is not defined at ¢ = 0 for infinite lattices in
which Coulomb interactions are present, and we ex-
clude this single point from our analysis. For any

other ¢, k¢ »- 1N(q)) approaches the well-defined
value (47a3/v,)N($) as p approaches one. However,
the latter matrix cannot be neglected in comparison
to A no matter how small we make the value of ¢>0.
Thus, the long-wavelength behavior of the normal
modes of crystals with Coulomb interactions is not
governed by A alone but by a matrix C%@) defined by

CO(p) = A + (41a3/v,N() (15)

The term (41ra3/va)N($) is equivalent to the macro-
scopic electric dipole field contribution to the dyna-
mical matrix first derived by Born.1

We saw above that when p > 1, the matrix A has all of
the symmetry properties of a dynamical matrix at

¢ = 0 discussed in Sec.III. Referring to Appendix B,
we see that the elements of A vary continuously as
we let p — 1. It follows that A must still possess
these symmetry properties in the limit of p = 1. In
particular, the matrix A in Eq. (15) obeys Eq. (7) with
¢ = 0 in the form

A(0; {RIV(R))AAT(O; {RIV(R)})) = A, (16)
and obeys Eq. (10) in the form

E I‘Lk/zAKU :E IJ'lll/2AKU: 0. (17)

K v

Further, the eigenvalues and eigenvectors of A may
still be studied using the group theoretical analysis
of Sec. III. However, we again emphasize that the
long~wavelength behav1or of the normal modes is now
governed by Co(¢) and not by A.

We could now proceed with our analysis of lattices
with Coulomb interactions by either of two routes.
We might attempt to study the long-wavelength be-
havior of their normal modes by directly considering
symmetry properties of CO(¢). However, we shall
take the alternative route of studying how conclusions
based upon the properties of A are to be modified be-
cause of the  presence of the macroscopic field term

(47a3/v,)N($).
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V. PROPERTIES OF THE LONG-WAVELENGTH
DYNAMICAL MATRIX FOR THE COULOMB
CASE

If Coulomb interactions are present in a lattice, then
the long-wavelength eigenvalues A0 (¢) and eigenvec-
tors ¥0(¢) are solutions of the eigenvector equation

CO(P)¥O(P) = (A + (4na3/v,N($))¥0($)
=20(P)¥0($). (18)

The matrix CO($) is real and symmetric; and, thus,
its eigenvectors span S;(total). If two or more bran-
ches of the dispersion relat1ons become degenerate
in the long-wavelength limit, Eq. (18) will not give
their long~wavelength eigenvectors but only a sub-
space of S, . (total) in which they lie. However, many
qualitative properties of these eigenvectors can be
deduced from knowledge of this subspace.

Since both of the matrices A and N(@@) are real and
symmetric, their eigenvectors also span S5, (total).
The eigenvalues and eigenvectors of A are given by

Awa = ra¥a, (19)

Because A obeys Eq. (17), it has a threefold degener-

ate eigenvalue of zero. The corresponding eigenvec-

tors (the acoustic modes of A) are represented by 3f-
component column matrices consisting of three-com-
ponent submatrices ¥, which are of the form

‘I’K = U%/z‘l’, (20)

where ¥ is an arbitrary three-component vector. The
acoustic modes of A occupy a three-dimensional sub-
space S;(acoustic) of S, ((total). This subspace is the
first of several subspaces of S; ((total) which will be
defined in this paper. To aid the reader, we list each
such subspace together with its quahtatlve descrip-
tion in Table I.

Next we consider some properties of N(¢). Using
Egs. (2) and (12), we see that

E pL/2N,, =Z} ul/2N_, = 0. (21)

It follows from Eq. (15) that the acoustic modes of A
are also acoustic modes for C°(¢) In order to deter-
mine the eigenvectors of N(¢), we first determine
those of the matrix L($) which appears in Eq. (12).
Using Eq. {13), we see that

L($)$ = ¢. (22)

Let 7($) be a three-component transverse vector.
Again using Eq. (13), we find

L($)n($) = 0. (23)

Thus, any three-component transverse (longitudinal)
vector is an eigenvector of L(¢) corresponding to the
eigenvalue zero (one).

1t follows from Eqgs. (12) and (23) that any transverse,
3f -component vector ¥t($) will be an eigenvector of
N(¢) corresponding to the eigenvalue zero. There
are 2f independent vectors of this type in S5, (total).
Next consider the longitudinal vectors. In the long-
wavelength limit any 3f-component, longitudinal vec-
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TABLE L.

Description(s)

Summary of subspaces and vectors.

Space or vector

S, 5 (total) The space of normal mode eigenvectors

S, (acoustic) The subspace spanned by long-wavelength

acoustic mode vectors

S3f-1(y = 0; 0) The subspace spanned by the eigenvectors of
N() corresponding to the eigenvalue zero; the
subspace of long-wavelength eigenvectors (for
the given ¢) whose longitudinal components pro-
duce no change in the electric dipole moment

per cell

The subspace spanned by the eigenvectors of

M($) corresponding to the eigenvalue zero; the
subspace of long-wavelength eigenvectors (for
the given cp) whose transverse components pro-
duce no change in the electric dipole moment per
cell

S3r-20y=10; )]

S34-3 (zero) The subspace of vectors contained in Sy, (A =

0; ¢) for all ¢

The intersection of S5, 1 (A y = 0; ;$)and S5,
A =05 ; §); the subspace of long-~ wavelengt{l
e1genvectors which produce no change in the
electric dipole moment per cell

¥in(d)

S, (normal)

The unit normal to S5, (A = 0; §)

The subspace of vectors normal to S5 _; (zero);
the subspace of all vectors parallel to \Ifl”(cp) for
some ¢

tor ¥ (@) will consist of three-component submatri-
ces of the form

¥iP) =YL()P, (24)

where Wi((i;) is an arbitrary scalar function. With the
aid of Eqgs. (12) and (22), we find that

N@@)¥ U E (ueh, Y2122, 2, % (D). (25)

From the above equatmn, it is clear that any ¥($)
obeying the equation

T wl2z%1@) =0 (26)

will be an eigenvector of L((ﬁ) corresponding to the
eigenvalue zero. There are f — 1 linearly indepen-
dent longitudinal vectors in S (total) satisfying Eq.
(26), and physically they represent vibrational modes
which are longitudinal and produce no change in the
electric dipole moment per cell in the long-wave-
length limit., Thus, the eigenvalue zero of N(¢)

(3f — 1)-fold degenerate and the corresponding eigen-
vectors occupy a (3f — 1)-dimensional subspace of
Sss (total). We shall denote this subspace by the
symbol S5, ; (A y = 0; ;).

We must determine one more independent eigenvec-
tor of N(¢) Define the normalized longitudinal vec~
tor ¥#(¢) by

¥1($) =(E u;lZ%>'1/2u;1/22,<$. (27)

Using Eq. (25), we see that ¥in(P) is an elgenvector
of N(@) corresponding to the eigenvalue 5, Z2/1,
and is thus the additional vector required. Clearly
¥in($) is a unit vector normal to the subspace

S35 100y =0; #). The projection operator of S; , (to-
tal) onto ¥z ($) is (33, Z2/u, ) IN($). It follows that
the projection operator to the subspace S35 (A y =
0; ¢) is given by

PS5, 10y =0; ) =T~ (23 z2/u U)-m(&), (28)
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where I is the 3f X 3f unit matrix

VI. CRITERIA FOR DETERMINING EIGENVALUES
AND EIGENVECTORS OF C%¢) FROM THOSE
OF THE MATRIX A

In Sec.IV we saw that the matrix A possesses all of
the symmetry properties of a dynamical matrix at

¢ = 0 for a lattice in which Coulomb interactions are
absent. It is, thus, of interest to compare the eigen-
vectors ¥¢ and eigenvalues A2 of A with those of

COo().

We first consider under what circumstances an
eigenvector ¥2 of A will be an eigenvector of CO (@)
for a particular ¢. From the treatment in Sec.V,it
is clear that we have the following cases;

(1) ¥aeS,, 0, =0;@),then ¥ is also an
eigenvector of CO ($) with the same eigenvalue 12,

(2) If ¥ = const X ¥!n($), then ¥ is also an eigen-
vector of CO(¢). However, it follows from Eq. (18)
and the discussion followmg Eq. (27) that the corres-
ponding eigenvalue of CO($) is not A2 but instead is
Ae + (dnad/v, ) 25, (Z2/ 1, ).

(3) If neither case (1) nor case (2) holds true, then
¥a is not an eigenvector of CO(¢).

In the preceding paragraph we regard fﬁ as having
some fixed value. We now discuss conditions under
which elgenvectors of A will be eigenvectors of C°(¢)

for all §. Notice that as ¢ varies, the swbspace
S3s1(y = 0;@) and its normal ¥($) vary. As @
takes on all porssmle values, the vectors parallel to
¥ 2($) fill out a three-dimensional subspace of S, ¥
(total) consisting of all vectors ¥ of the form

¥, = u':ZI/zZK'p’ (29)

where Y is an arbitrary three-component vector. We
denote this subspace by S5 (normal). It follows that
there is a (3f — 3)-dimensional subspace of S, (to-
tal) which is contained in S5, ; (A y = 0; ; @) for all ¢.
This subspace is the subspace of all vectors orthogo-
nal to every vector in S; (normal). We denote it by
the symbol S3,_3 (zero), and it follows from Eq. (29)
that ¥ € S5, 5 (zero) if and only if its three-compo-
nent submatrices ¥, obey the relation

ZK> /J-El/ZZK'FK =0. (30)

Physically, a ¥ obeying Eq. (30) is a long-wavelength
mode which produces no change in the electric dipole
moment per cell.

We can now state some important cases under which
eigenvectors of A will be eigenvectors of C® (@) for
all ¢.

Case (a)

If ¥¢ is an eigenvector of A with the eigenvalue A ¢
and if ¥% € Sz, 5 (zero), then ¥ is an eigenvector of
CO($) corresponding to the same eigenvalue A¢ for
all ¢.

Case (b)

Assume A has a q-fold degenerate eigenvalue 12, The
eigenvectors corresponding to this degenerate eigen-

1211

value span a ¢-dimensional subspace S; of S, (total).
If this subspace is contained in S3; 5 (zero) these
eigenvectors of A are also elgenvectors of CO(¢) for
all ¢. Even if the above is not true, the intersection
of S, with S5, 1y =0; ; ¢) must be at least (g — 1)-
dlmensmnal for each ¢ 9 Thus, for each ¢ we can
construct ¢ — 1 mutually orthogonal eigenvectors of
A which lie in S3;_ 1 (A, = 0; ; #), and these vectors will
be eigenvectors of C°(¢) correspondmg to the eigen-
value A%, (Of course, perturbation theory must be
used to determine the proper vectorsif g —1>1,)
As ¢ varies, these vectors vary and trace out the
long-wavelength behavior of the normal modes for

q — 1 branches of the dispersion relations. Each of
these branches approaches the frequency A¢ in the
long-wavelength limit.

Case (c)

Assume that, as in Case (b), A has a ¢g-fold degener-
ate eigenvalue ¢, where now g > 3, and S ¢ contains
S, (normal). Then for each ¢ there is an eigenvector
of A which is parallel to \I'l"(dJ) and is, therefore, an
eigenvector of CO(¢) corresponding to the elgenvalue
Ae + (4ma3/v, )2, Z2/p,. In addition we can con-
struct g — 1 1ndependent eigenvectors of A which are
orthogonal to \Ifl"(¢) and, therefore, lie in S5, 1 (A y =
0; ¢) for each ¢. These vectors w111 be elgenvectors
of C%(¢) corresponding to the eigenvalue A¢. In the
long-wavelength limit the dispersion relations for the
lattice will contain one branch approaching a frequen-
cy corresponding to the former eigenvalue and ¢ — 1
branches approaching a frequency corresponding to
the latter eigenvalue. The branch approaching the
higher eigenvalue will become purely longitudinal in
this limit.

The standard methods of group theory discussed in
Secs.III and IV can be applied to determine the de-
generacies of the eigenvalues of A and to gain infor-
mation concerning the subspaces of S, (total) in
which the corresponding eigenvectors {1e The re-
sults in Cases (a)~(c) can then be applied in order to
gain information about the eigenvalues and eigenvec-
tors of CO(¢).

VII. SOME CONSEQUENCES OF CASE (a)

In this section we give some useful results which fol-
low immediately from the discussion under Case (a)
of Sec. VI

Consider the acoustic mode vectors of A. Using Eqs.
(2), (20), and (30), we see that these eigenvectors lie
in Sz, 5 (zero). It follows from Case (a) that the
acoustic mode vectors of A are also acoustic mode
vectors of C%{¢). (The same result was obtained
more directly in Sec.V.)

Next assume that A is invariant under the transposi-
tion (kyv,) of two particular indices of its submatri-~
ces, (That is,A, ovo = Bryrgs Ay, =4, and
A=A, ,\ilr " VO or k,.) Further, assume that
2 =2, and My, = Hy,. Then,using Eq (19) and the
fact that A is real and symmetrlc, one can easily
show that A has three linearly independent eigenvec-
tors, each of the general form

¥, =0 ifAx # Kk, or v,
and (31)
¥ =—W¥

L Kg'
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Clearly these eigenvectors obey Eq. (30) and lie in
Sa-3 (zero), so that the discussion under Case (a) is
applicable. These eigenvectors of A are also eigen-
vectors of CO(@) with the same eigenvalues.

More generally, if A is invariant under the product of
n independent transpositions of indices of its subma-~
trices, (kv KkgVy) + -« (k,v,) with Z, =Z, and

qu = uvj, then A has 37 independent eigenvectors of

the general form

¥, =0 ifx #k; orvy;,
and (32)
¥, =—%¥, .

Kj i

Again Eq. (30) is satisfied and Case (a) is applicable.
All 3% eigenvectors of A are eigenvectors of CO(¢)
with the same eigenvalues.

VII. DIRECTIONAL DEPENDENCE OF THE FRE-
QUENCY AT LONG WAVELENGTHS

Suppose we start with a solution ¥° (¢) of Eq. (18) for
a particular ¢ If we now vary ¢ continuously, then
¥0($) varies continuously and traces out the long-
wavelength behavior of the normal modes for a parti-
cular branch of the frequency spectrum. In general,
it is possible that A9(¢) will also vary as we trace
out the branch. In such a case, the branch will not
approach a definite frequency as ¢ approaches zero,
but instead the value approached will depend upon the
direction from which ¢ approaches zero.

In order to study the directional dependence of A? (@),
we must first determine how N(¢) and CO( ¢) vary as
¢ varies. If ¢ is rotated to ¢’, then ¢ = R¢, where
R is a three-dimensional orthogonal matrix. The set
of all R forms an irreducible representation 0(3) of
the rotation group. Using Eq. (13), we find that

L(R$) = RL($)RL. (33)
It then follows from Eq. (12) that
N(R$) = ON($)0°7, (34)

where © is a 3f X 3f matrix consisting of 3 X 3 sub-
matrices given by

eKlI = 6;(;uR" (35)
Since A is independent of ¢, we find that

CO(R) = A + (4na3/v,)ON($)O 1. (36)
An immediate result of Eq. (36) is that Tr[CO(R¢)] =
Tr[CO($)] for all R. Thus, even if A0(¢) depends-upon
the d1rect1on for some branches the sum over all
branches Z)j 1 )\0 () is mdependent of ¢. This is the
long-wavelength 11m1t of a sum rule first discussed
by Blackman!© and later by other authors.11.12

A necessary and sufficient condition that CO(¢) and
CO(R¢$) have the same spectrum of eigenvalues is

that there exist a matrix Q(R, ¢) such that
Co(R$) = Q(R, $)CO($)Q L(R, ).

Suppose that R is an element of the point group for
the lattice. The matrix N(¢) is invariant under any

(37
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permutation of indices of its submatrices if these in-
dices correspond to particles having the same charge
and mass. It then follows from Egs. ( ), (36), (16),

and (8) that we can choose Q(R, é) = (0 R) for any
$. Thus, even if A%(¢) depends upon $, A0(¢) is in-
variant under a transformation of ¢ which is an ele-
ment of the point group for the lattice.

A necessary and sufficient condition that all branches
of the dispersion relations for a lattice approach de-
finite values in the long-wavelength limit is that for
some ¢ the matrix Q(R, ¢) exists for allR € 0(3).
Thus, a sufficient (but not necessary) condition is that
(3] commute with A for all R € O(3), for then we can
choose Q(R, ¢) = Q(R) = O, The condition ®A = A©
for all R is equivalent to the condition RA,, = A, ,R
for all k,v,and R, It follows from one of Schur's
lemmas13 that the latter condition holds if and only if
A =a I, (38)

KV KV

where a,, is 2 number and I is the 3 x 3 identity ma-
trix. The point group for any lattice contains a sub-
group for which the quantity 6(k, Fy(k’,R)) in Eq. ()
equals 6, ,,. Using Eq. (16), we see that if this sub-
group contains the tetrahedral group T, then all sub-
matrices A, , of A will obey Eq. (38). Thus, all bran-
ches of such lattices will approach definite frequen-
cies in the long-wavelength limit. Examples are such
structures as NaCl, CsCl, CaF,, and ZnS.

The above sufficiency condition is too restrictive to
be a necessary condition. For example, the following
generalization can be made immediately. Suppose
that A is not required by Eq. (16) to have the form of
Eq. (38), but that a matrix U exists s having the proper-
ties that UN(¢)U-1 = N(¢) for all ¢ and that UAU-L
has the form given in Eq. (38). Then we can choose
Q(R, ¢) = Q(R) = U-1@U. It follows that all branches
of the dispersion relations approach definite frequen-
cies in the long-wavelength limit. An illustration of
this case is given in Sec. XII.

IX. DIRECTIONAL DEPENDENCE OF THE FRE-
QUENCY FOR PARTICULAR BRANCHES AT
LONG WAVELENGTHS

In Sec. VIII we considered the question of whether or
not all branches of the dispersion relations for a
given lattice approach definite frequencies in the
long-wavelength limit. In this section we will derive
a necessary and sufficient condition that a given
single branch approach a definite frequency in this
limit. A sufficient (but not necessary) condition fol-
lows immediately from the work in Secs. VI and VIII:
A branch will approach a definite frequency in the
long~wavelength limit if, in this limit, either its
eigenvectors lie in S3,_ 1(7\N =0;¢) for all $ or are
parallel to ¥i2(¢) for a11¢

We now derive a necessary and sufficient conditign
that the term A0 (§) in Eq. (18) be independent of ¢
for a given branch of the dispersion relations. The
¥0($) which give the long-wavelength behavior of the
normal modes for a particular branch of the disper-
sion relations are solutions of Eq. (18) and vary con-
tinuously as ¢ varies continuously, Suppose that we
make an infinitesimal rotation of ¢. According to Eq.
(34), the matrix N($) in Eq. (18) is then transformed
into ®N($)©-1, Referring to Eq. (35) and remember-
ing that the transformatmn is infinitesimal, we see
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that ® may be written in the form © =1 + E, where I
is the 3f X 3f identity matrix and E consists of 3 X 3
submatrices of the form

E, =066 (39)

where € is an antisymmetric, infinitesimal matrix of
the form

0 4y —8
€= |—vy 0 al. (40)
B —a O

Referring to Eq. (15) and neglecting second-order in-
finitesimal terms, we find that the change produced in
CO0(¢4) by an 1nf1n1tes1ma1 rotation of ¢ is given by

6CO () = N($E] (41)

The resulting change 610 ($) in A0 (@) is determined
from first-order perturbation theory. It is given by

610(§) = ¥OH($)[6CO($)] X0 (), (42)

(4na3/v,)[EN() —

where we assume that ¥0(¢) is normalized. A neces-
sary and sufficient condition that A0($) be independent
of ¢ for the _entire branch of the dispersion relations
is that 6x0(¢) = O for all ¢ and for arbitrary values
of the parameters o, 3, and y in Eq. (40). Using Egs.
(12), (39), and (42), we see that this condition reduces
to the condition that

T 2,2, (bt /290 ($)(€L(@) — L($)e) ¥ (@) = 0

v (43)

for all ¢, @,B,and y.

Express ¥°($) in the form of the sum of its longitudi-
nal and transverse parts. That is, write

¥) = YL (@) + VL@)N, (), (44)

where the functions ¥ (tp) and 1,l/t(¢) are scalars, and
7, (®) is a unit, three-component, transverse vector.

Usmg Eqgs. (22), (23), (40), and (44), we find that Eq.

(43) will hold for arbitrary a,,and y if and only if

{Z} pl2z, Y } l:Z) w2z, (¢)fl,<(¢)]

(45)
where the symbol X is the usual cross product from
vector analysis.

Equation (45) holds true if and only if either one or
the other of the two factors vanishes. Thus, a branch
of the dispersion relations will approach a definite
frequency in the long-wavelength limit if and only if,
for all ¢, either

2 w2Z i ($)$ =0, (46)

or

2 w2z, yi@)n, ($) = 0. (47)

Physically Eq. (46) states that, in the long-wavelength
limit, the longitudinal part of the mode produces no
net change in the electric dipole moment per cell, and
Eq. (47) states the same thing for the transverse part
of the mode. We emphasize that either the condition
of Eq. (46) or the condition of Eq. (47), for all , is
sufficient.

1213

Both of the situations mentioned in the first para-
graph of this section are included in the above result.
The condition that Eq. (46) hold | true for all ¢ is equi-
valent to the condition that ¥O(P) S35-1(0y =0, )
for all ¢ Any branch of the dispersion relations
which is purely longitudinal in the long-wavelength
limit satisfies Eq. (47) for all d) Thus, any vector
parallel to ¥i2($) for all ¢ satisfies th1s condition.

We conclude this section by deriving some properties
of the subspace of S5, (total) consisting of vectors
satisfying Eq. (47) for a particular ¢. Define the 3f X
3f matrix M(¢) by

Mxv((ﬁ) =

where the matrix T(¢) is given by

(ki) 22, Z,T($), (48)

P+ 03 — ¢10, — d103

— 010, ¢F+ dF — ¢uh3 | (49)
— 0195 — 6505 9%+ 03

The matrix M($) has properties analogous to those
of N(¢) with the roles of transverse and longitudinal

vectors reversed. The submatrix T(¢) obeys the
equations

T($)$ = 0 (50)
and A
=1(¢9), (51)

T($) = ¢2

T($)1($)
where () is a unit, three~component, transverse
vector. A vector sat1sf1es Eq. (47) if and only if it is
an eigenvector of M($) corresponding to the eigen-
value zero. Carrying out an analysis similar to that
given in the last part of Sec.V, we find that there are
3f — 2 independent vectors of this type. Thus, we de-
note the subspace of vectors obeying Eq. (47) by
Sgf-apy =0; ;$). [The matrix M(®) also has the two-
fold degenerate eigenvalue 25, (Z2/ uK) with corres-
pondl]ng eigenvectors of the form ¥, (§) « (Z,/ul/2)

($)

From the above discussion, we can easily construct a
projection operator P(S3,_ Z(AM = 0; ¢)) to Szpoly =
0; ). It is given by

P(S35-5y =0; ¢)—1—(E Z3/um, )M (), (52)
where I is the 3f X 3/ identity matrix. Finally, we

note that the intersection of S;5_; (A y = 0; ;®) and
S37-2(y = 0; ) is the subspace S3;_g (zero)

With this section we conclude our general mathema-
tical development for this paper. In the following sec-
tions we apply some of the above results to specific
examples.

X. CRYSTALS WITH TWO PARTICLES PER CELL

For our first example we consider crystals having
two particles per cell, where the point ion model is
used. The space S;; (total) = S¢ (total) is six dimen-
sional. There are three independent acoustic mode
vectors which are of the general form given by Eq.
(20) with ¥ = 1 and 2. There remain three indepen-
dent optical mode vectors which must be orthogonal
to the acoustic mode vectors and thus have the gener-
al form

J. Math. Phys., Vol. 13, No. 8, August 1972
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~1/2
¥ = Ky '/ ’

where ¥ is a three-component vector.

(53)

We now consider the conditions under which an opti-
cal branch will approach a definite frequency as ¢ —
0. According to the discussion in Sec. IX, a necessary
and sufficient condition that the above be true is that
either '1'0(4)) €Sy = 0;@) or ¥O($) € S, (A, = 0; )
for all ¢, where \1'0(6) gives the long~ wavelength be-
havior of the eigenvectors for the branch. The above
condition is equivalent to stating that either P(S; ( N:
0; $))¥0 () = wO(@) or P(S, (1, = 0; $))¥0($) = ¥0(9)
for all ¢. Using Egs. (28) and (52) we impose each of
these conditions on a vector ¥9($) of the form given
by Eq. (53) and obtain the following result: An optical
branch for a crystal with two particles per cell (and
Coulomb interactions) will approach a definite fre-
quency in the long-wavelength limit if and only if, in
that limit, the branch becomes either purely trans-
verse or purely longitudinal.

Next we obtain eigenvalue equations for A and C%(¢)
with vectors of the form given in Eq. {(53). Attach the
superscript a to ¥ in Eq. (53) and substitute the result
into Eq. (19). Using Eq. (17), we obtain the following
result:

(1 + py/upAg e = Aeypa. (54)
Attach the superscript 0 to ¥ and substitute the result
into Eq. (18). With the aid of Eqgs. (2), (12),and (17),
we find that

A+ py/up)[A gy + (nad/v,)(Z3/u)L]YO ()
= A0(@)PO ().

From Egs. (22) and (23), it follows that Y0 (¢) will be
a purely transverse or purely longitudinal solution of
Eq. (55) if and only if it is also a solution of Eq. (54)
for all ¢. Thus, eigenvectors of C°(¢) which are
transverse (longltudmal) for all ¢ can be found by
determining eigenvectors of A;; which are trans-
verse (longitudinal) for all ¢ and by substituting the
results into Eq. (53).

(55)

In the remainder of this section we analyze the long-
wavelength behavior of the optical branches for the
various crystal symmetries. The two particles in
each cell cannot be identical since Z; = — Z,. Thus,
the factor 6(x, F(«’,R)) in Eq. (6) must equal 6,
Equation (16) then reduces to

where R is any element of the point group for the lat-
tice. Equation (56) and the fact that A,, is real and
symmetric can be used to determine the form im-
posed on A, by the crystal symmetry.

If the point group for the lattice belongs to either the
triclinic or monoclinic system, we find that A, has
three distinct eigenvalues (barring accidental dege-
neracy). But in this case the directions of the eigen-
vectors of Eq. (54) are fixed, and a vector which is
transverse or longitudinal for all ¢ cannot be a solu-
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tion. Therefore, in the long-wavelength limit none of
the optical modes approaches a definite frequency.

For crystals whose point groups fall into the trigonal,
tetragonal, or hexagonal systems, we find that A,
may be reduced to the form

a0 0
0 a 0],
00 y

A, = (57)

where in all cases we chose the 2 axis to be the prin-
ciple rotational axis of the point group. Since A;;
(and thus A) has a twofold degenerate eigenvalue, the
discussion under Case (b) of Sec. VI is applicable, and
Cco (¢) has at least one eigenvector lying in S (A 5 =

0; ¢) for all ¢ . Clearly, one such vector is obtained
by setting ¥0($) = ¢ =1 1($) in Eq. (54), where

2
11$) = (63 + ¢3)1/2) — ¢4 .
0

(58)

The corresponding eigenvalue is A0 = (1 + u, /u,)a.
In the long-wavelength limit one optical branch is
purely transverse and approaches a definite frequen-
cy given by the above value of A0, The two remaining
solutions of Eq. (55) must be of the form ¥°(¢$) =

cl¢ + c,72(¢), where ¢, and c, are constants and
72($) is a unit transverse vector orthogonal to 71 ().
Substituting this vector into Eq. (55), we obtain the
eigenvalues

A0 =31+ py/p) e +y + Q)
t [(@ —y — Q)2 + 4(@ — )2 sin20]1/2}, (59)

where @ = (4ma3/v,)(Z%/1,), and 6 is the angle be-
tween ¢ and the z axis. Barring accidental degener-
acy (@ = y), the frequencies approached by these opti-
cal branches in the long-wavelength limit depend
upon 0. Neither branch is purely transverse or pure-
ly longitudinal in this limit.

Finally consider lattices whose point groups belong
to the regular system. For such lattices, it follows
from Eq. (56) that A, = al. We can easily solve Eq.
(55) for this case;however, in order to illustrate
some of the material in the preceding sections, we
instead give the following arguments. The matrix A
has the threefold degenerate eigenvalue (1 + p/u5)e,
and the corresponding eigenvectors span a three-
dimensional subspace S5 of S (total), where S3 is
orthogonal to the subspace S5 (acoustic). But in Sy
(total) the subspace S5 (acoustic) coincides with S
(zero). Thus,S% coincides with S, (normal), and the
discussion under Case (c) of Sec. VI is applicable.
One of the eigenvectors coincides with ¥ l"(¢) de-
fined by Eq. (27) with k = 1 and 2, for all ¢. The cor-
respondmg eigenvalue is (1 + pl/uz)[oz + (4rad/v,)
(Z%/p1)]. The remaining two eigenvectors lie in
Sz y =0; ; #) and correspond to the eigenvalue (1 +
py/ ). The latter two vectors are transverse, be-
cause S;(A y = 0; : $) can contain only one longltudlnal
vector and this vector lies in S5 (acoustic). Thus, in
the long-wavelength limit all three optical branches
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approach definite frequencies. Two branches become
purely transverse and degenerate in this limit and
the remaining branch becomes purely longitudinal.

XI. THE WURTZITE STRUCTURE

For a second example consider point ion models for
lattices having the Wurtzite structure. Such lattices
consist of two geometrically identical, interpenetra-
ting, hexagonal close-packed structures. The first
consists of identical cations (k = 1 and 2), and the
second consists of identical anions (k = 3 and 4). The
two close-packed structures are displaced from each
other in the direction perpendicular to the bases of
the unit hexagonal prisms. There are four particles
per unit cell, and thus S, (total) = S;, (total). The
point group for the lattlce is Cg,-

We imbed a Cartesian coordinate system in the lat-
tice with the origin at the position of one of the ca-
tions (with ¥ = 1). The z axis is chosen perpendicu-
lar to the base of a hexagonal prism. The x axis in-
tersects a vertex of the hexagon of particles with k¥ =
1 centered about the origin, and the y axis bisects a
side of the same hexagon. Then, using Egs. (6) and
(16) and the fact that A is real and symmetric, we
find that the form for A required by symmetry is

Ay Ay Az Ay
A, Ay Ay Ay

A= 3 (60)
Az Ay A A34
Ajys Ay, Az, A
where
a., O 0
A, ,=A=|0 e, 0 . (61)
0 0 By

In addition the A, obey Eq. (17).

We must determine the long-wavelength behavior of
the twelve branches of the dispersion relations.
Three of these are acoustic mode branches, which

lie in S4 (zero). Equation (60) shows that A is invari-
ant under a product of transpositions of its indices of
the form (12)(34). It follows from the analysis in Sec.
VII, that A and CO(¢) have six additional linearly inde-
pendent eigenvectors lying in S, (zero). According to
Eq. (32), the general form of these vectors is given by

L 21
-y,
L2
¥,

¥ = ’ (62)

where ¢, and ¥, are three component vectors. The
corresponding eigenvectors and eigenvalues of A and
CO($) are easily found by substituting Eqs. (60), (61),
and (62) into Eq. (19). We will not list the results
here but point out that there are two twofold degener-
ate eigenvalues and two nondegenerate eigenvalues.

So far we have established that at least nine of the
twelve branches of the dispersion relations approach
definite frequencies in the long-wavelength limit. To
study the three remaining branches, construct a
general vector which is orthogonal to S; (acoustic)
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and to any vector of the form given in Eq. (62). The
form of such a vector is

1/24,
pi/2y
— pi/2y

| - 29

) (63)

where { is a three-component vector.

Eigenvectors of A or of C°($) of this form can be de-
termined by substituting Eqs. (60), (61), and (63) into
Eq. (19) or Eq. (18), respectively. Mathematically, the
remainder of the problem is identical to the problem
of determining the optical modes for a hexagonal
(etc.) crystal with two particles per cell discussed
in Sec.X. We find that for one eigenvector of CO @),
tp in Eq. (63) is proportional to 71(¢) as defined in

d. (58). The corresponding branch of the dispersion
relations is purely transverse in the long-wavelength
limit and approaches a definite frequency correspond-
ing to A0 = (1 + pg/pi)(@35 + @3,). The remaining
two branches of the dispersion relations are neither
purely transverse nor longitudinal in this limit and
do not approach definite frequencies. The eigenvalues
of CO(@) for these branches are given by

)

2 3 4 5

108/

FIG.1. A%/Q as a function of ¢ for lattices of the wurtzite structure

with A7 + A7 = 10Q. The solid line results from A} — 17 = (3/2)Q
and the broken line from X} — A5 = 28.

N

ol

FIG.2. A9/Q as a function of 6 for lattices of the wurtzite structure
with A7 + A7 = 10Q. The solid line results from A7 — A7 = 3%, the
hatched line from A} — X} = 4£, and the broken line from 1} —

A, =69,
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AQ() = 3O + Ap) £ Z[(AL — A7)

+ B8R\, — AL + 2Q) sin20]1/2,  (64)
where A0" = A0/(1 + pg/py), Q= (4ma3/v,)(Z%/u3),
A7 = (@35 + @gy),and A} = (B33 + Bz,) + 29. The
quantity 9 is the angle between ¢ and the z axis.

In Figs. 1 and 2 we illustrate the #-dependence of the
two branches for some hypothetlcal models with A7 +
A% = 108 and with values of A} — A} ranging be-
tween (3/2)Q and 6Q. The branches are either longi-
tudinal or transverse at 8 = 0 and 6 = 7/2, and this
property is shown by an L or T on the graph. The
model with X — AL = (3/2)Q is qualitatively similar
to a model for Cadmium Sulfide studied by Nusimo-
vici and Birman.14 Finally notice that if A} — A} =
24, then both branches approach definite frequencies
in the long-wavelength limit. In this case (035 + a5,)
1
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= (B33 *+ B3,4),and all three of the modes just analyz-
ed become accidentally degenerate. The matrix A
then has a threefold degenerate eigenvalue whose
eigenvectors span S5 (normal) and the discussion
under Case (c) of Sec. VI becomes applicable.

XII. THE CUBIC PEROVSKITE STRUCTURE

For a final example, we consider a lattice of the cubic
perovskite structure. Such a lattice consists of three
types of ions, A, B, and C. There is an ion of type

A (k = 1) at the corner of each cube, an ion of type

B (k = 2) at the center of each cube, and an ion of
type C (x = 3, 4 and 5) at the center of each cube edge.
Thus, there are five particles per unit cell and the
space Sy, (total) = S, 5 (total) is fifteen dimensional.
The point group for the lattice is 0O,. We choose Car-
tesian coordinates along cube edges and, using Eq.
(16), find that the form of A required by symmetry is

Kl Al F(5,¢,€) F(e,8,¢€) Fe,e,0)]
AL 12! F(,v,v) Fv,8,v) F(v,v,8)
A= |F@,¢,¢) F(E,v,v) F0,7,7) Flp,p,4) Flo,wp)|, (65)
F(e,0,¢) F(v,{,v) Flp, p,w) F(r,0,7) F(wp,p)
[Fle,¢,6) F(v,,0) Flo,w,p) F(wp,p) F(r,7,0)]
r
where jection operator, we find [with the aid of Eq. (30)] that
% 0 0 any vector transforming according to I', 5 lies in the
subspace Sy, (zero); and, thus, the discussion under
F(x,v,2) = |0 » Of. (66) Case (a) of Sec. VI is applicable., Three branches of
00 z the dispersion relations for the lattice become de-

We now show that all branches of the dispersion re-
lations approach definite frequencies as ¢ approa-
ches zero. Define the matrix U by

10 O 0 0
01 0 0 0
0 0 F(1,0,0) F(0,1,0) F(0,0,1)|.
0 0 F(0,1,0) F(0,0,1) F(1,0,0)
|0 0 F(0,0,1) F(1,0,0) F(0,1,0)]

(67)

Using Eqgs. (65), (66), and (67), we see that UAU -1 has
the form given in Eq. (38). Further, using Eq. (12)
and the fact that particles with k = 3 4,and 5 have
equal charges and masses, one finds that UN($)U-L =
N(¢) for all ¢. Referring to the last paragraph of
Sec. VI, we conclude that all branches of the disper-
sion relations approach definite frequencies in the
long-wavelength limit.

We conclude this section by giving a qualitative dis-
cussion of the behavior of the fifteen branches of the
dispersion relations as ¢ approaches zero. Using Eq.
(8), we construct the matrices T(0;R) for the lattice.
The resulting representation of the point group O,
reduces to 4T'; 5 ® T'y;. Since both of the 1rredu01ble
representations I'; ; and I'y ; are three dimensional,
the matrix A has five threefold degenerate eigen-
values. With the aid of Eq. (9), we construct a projec-
tion operator to the three-dimensional subspace of
vectors in S, 5 (total) transforming according to I'; ;.
Then, operating upon a general vector with this pro-
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generate as ¢ approaches zero. Using Eq. (19), we
easily find that the frequency approached corresponds
toA=7—w,

The subspace of vectors transforming according to
I'y 5 is the subspace of vectors orthogonal to all vec~
tors transforming according to I'y 5. There are four
sets of such vectors, each set corresponding to a
threefold degenerate eigenvalue of A. One set pro-
vides three independent acoustic mode vectors for A
which are also acoustic mode vectors for C%(¢). Con-
sider any one of the remaining three sets of vectors.
Since the corresponding eigenvalue A% of A is three-
fold degenerate, the discussion under Case (b} of Sec.
VI is applicable. For every ¢ at least two linearly
independent vectors from this set lie in S, , (A y = 0; ¢)
and are, therefore, eigenvectors of CO(¢) correspond-
ing to the elgenvalue A4, We do not expect the entire
set of vectors to lie in S, ,(A y = 0; ; @) for any ¢ ex-
cept accidentally, for if it did, a vector from the set
could be found which lies both in S; ,(A y = 0; ; $) and
S13y, =0; ; $).92 But the intersection of Sq ( §=0; )
and 3130‘M = 0; $) is S, , (zero), and only the acoustic
mode vectors and those transforming according to
T',5 are required to lie in S, , (zero) by symmetry.
Thus, each of the remaining three sets of vectors
(each set corresponding to a threefold degenerate
eigenvalue of A) provides us with two linearly inde-
pendent vectors corresponding to a twofold degener-
ate eigenvalue of C0(¢) [The eigenvalues are the
same for A and C°(¢).] In the long-wavelength limit
there are three sets of twofold degenerate branches
of the dispersion relations.

There remain to be considered three eigenvectors of
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C°(¢) These are not required by symmetry to lie in
S140y =0; ; §). Since in the long-wavelength limit the
correspondmg branches of the dispersion relations
must approach definite frequencies, it follows from
the work in Sec. IX that these vectors must lie in
813(7t = 0;$). The branches will not be degenerate
in the long-wavelength limit except by accident.

XIli. CONCLUDING REMARKS

In this paper we considered the behavior of the dis-
persion relations only in the limit of infinite wave-
lengths. In order to obtain information about such
properties as the contributions of the various bran-
ches to the phonon frequency spectrum in the long-
wavelength limit, it is necessary to determine the be-
havior of the dispersion relations at somewhat shor-
ter wavelengths. A general procedure for such an
analysis is the following. Using methods outlined in
Appendix B, we expand the dynamical matrix to
second order in the form

C(¢p) = C%(d) + C1(¢) + C2(¢) + remainder, (68)

where C1(¢) is purely imaginary and of first order in
the components of ¢ and C2(¢) is real and of second
order. The forms of C1(¢) and C2(¢) for a given
crystal symmetry can be determined by using Eq. (7).
We regard C1(¢) + C2(9) to be a perturbation of
CO($). The corrections to A0(¢$) given by perturba-~
tion theory determine the analytic behavior of A(¢) in
the neighborhood of ¢ = 0. So far, we have used this
procedure to successfully analyze a limited number
of cubic structures, including point ion and shell
models. However, we do not consider our present re-
sults to be of sufficient generality to include them in
this paper.

APPENDIX A

The contribution of the long-range interactions to the
dynamical matrix is given by

Chaleok |4) =a#2G1 2 (V204 (0 ')
x exp[2mign(lxKy)], (A1)

where if 0,k * I, k, then

0 1
L — -(p+2)
o } S(Ko K) = pGZK ZKoa

[ (p + 2)n](lmc0)n lKKO)<E n2(lkx )) -(p/2)-2

+ st<zi> n2(l "Ko)> -(p/2)-1:' , (A2)

and

0 0 0 1
oL = — L . A
78 (KO K0> Lk ¢ZO.KO ! S<K0 K) (43)

After applying the Ewald transformation to Eq. (A1),
we obtain the following results:

(1) ¥« # kg, then
Chkok|9) = [pn /21 /T(hp +1)] (2, Ze/ (e e H/2]

x [(21m3/va)zh) [6; + £;(W)][0s + &,(B)]

NORMAL MODES
x expl— 2nik(h)*[n(k) — nlxy)]}
X ®_y s pe1/2[P+ E(R)P)— 2m Zl) n;(LkKy)
x Ns(lkKy) exp[2migen(l kKy)]
X P(pr2) 41 (MN2(IKKy))
+ 0,5 Zl) exp[2mid*n (LkKy)]
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X &, m(mn2(l ki, )):l . (A4)

(2) If ky = k,then

Ch(kx|d) = Bf (kx| ) — B (kk|0)
- K§ (“Kl/p'lc)l/zcjlls(KK’ lO). (AS)

The quantity B% (k«|0) is given by

B, (kx0) = [pn#/2¥1/T(3p + 1)](Z2/p)

y ((zﬂas/ua@ [0, + &,(W][6, + &, ()]
X @173 pu1 2[4 + ED]D) — 21 20 m,(0)
x n5(1) exp[2mi¢7(1)]® (,/2)+1 @N2())
=G+ R0y, 4 650 28, pme(D)

X exp[Zni¢-n(l)]). (A6)

The subscript # indicates a summation over the reci-
procal lattice, and £(h) = ay(k), where y(k) is a reci-
procal lattice vector. The function &, (x) is an in-
complete gamma function defined by

& (%)= f1°° tm e-xtdy, (A7)

APPENDIX B

The elements of C5(¢) are known to be analytic func-
tions of ¢ at ¢ = 0. Expressions for the expansion of
& ,.(x) from x = 0 into regions of positive x are given
in Appendix B of Ref. 4. Using these expansions and
the relation &/ (x) = — & _,,(x), we can obtain expan-
sions of the elements of CL%¢) about ¢ = 0 from Eqgs.
(A4)~(A6). These expansions consist of a single non-
analytic term plus a power series in the components
of ¢. The constant and nonanalytic terms in the ex-
pansion for 1 < p < 3 are given by the following
equations:

(1) If k5 # K, then
CjLs(Ko'CI‘M = C“oK (p)Fjs(ﬂ(Ko) — (k)

+ ZKOZK("LKO’J‘K)_I/ZkP(pP_B(pj ¢s

+ remaining power series terms. (B1)

(2) If ky =k, then
Ch(kk|p)= —KE)K (/1)L 72C K (kK] 0)

+ Z%”T} kp¢p—3¢j b,
+ remaining power series terms. (B2)

In the above equations,
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I'(—3p+3)ad
b, = 9Qpyprl/2 25 ~ 2/ 7 B3
p = 20T Tép+1) v, (B3
pne/2)s1 7z 7
K(P) = ~ (B4)

Ko

T TEp ) (e )2
and

DAVIES
Fi(nlkg) —n(k)) = 2mad/v,) hE() €;(h)E(h)

x exp{— 2mik(R)*[(K) — N(ko) ]} 8-y 3 ps1 /2 (M E2(R))
— o Z} n;(Ikkg) N (IKKQY®(, /2 +1 (M2 (IKKG))

+ 85, Zl) &, /52 (lkky)). (B5)
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The finite transformations in an arbitrary irreducible representation of the SU(3) group are obtained by con-

sidering the reduced matrix elements of the operator ¢ "™, The special case of v = 37 is also worked out
and shown to be in agreement with earlier derivations. Symmetry properties and addition theorems for the
resulting matrix elements are explicitly stated. As a useful application of the method, the finite transforma-
tions of the Weyl subgroup on the basis vectors of an arbitrary irreducible representation of SU(3) are also

given.
1. INTRODUCTION

Although the infinitesimal transformations of the
SU(3) have received considerable attention,? it is
only in the past few years that the matrices of the
finite transformations in an arbitrary irreducible
representation of the group have begun to attract the
attention of some authors.2—4 A general element U
of the group was first parametrized in the form
U = D8y, 6)Uz3(Pp, 05)U12(01, 03)U;13(¢5,01)  (1.1)
by Murnaghan.5 Here D is a diagonal matrix with
elements expi6,, €xXpib,y, exp(— i6; — i8,), and

Upy(®, o) is a 3 X 3 unitary unimodular matrix which,
for instance for p = 1, g = 2 has the form

cosd —sing exp(—io) 0
U,yo(¢, 0) = {sind exp(io) coso 0]
0 0 1
(1.2)

An alternative which is analogous to the SU(2) Euler
angle parametrization and which is more convenient
for finding the finite transformations of SU(3) has

also been obtained recently by Nelson.é His result is
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U = e 1Ts g iosTs iy Ty pmitTy ,mivkg 1Y Ty yich Ty

x ¢'*3Ts  (1,3)
where Tg = (1/¥3)Ag, T; = 3\, (i = 1, 2, 3),and A, are
the Gell-Mann SU(3) matrices.! Since A5 and A5 are
diagonal it follows immediately that

<IMY 'e’ia3T3 e-iasz.'i)fTa II/M/Yr>

= D&M,(a:s, g, VIOyyibypy  (1.4)
and -iBT. ~iBY,

UMY e B IM'Y") = e 7 6yy0p Oypy e (1.5)
I is the isotopic spin, M the third component of I, and
Y the hypercharge. Instead of Y we shall, in the
following, use the more convenient notation §, which
is related to Y by

5 =73Y + 5(b— q), (1.6)
p and q being nonnegative integers characterizing an
irreducible representation of the group.

Using Eqgs. (1. 4) and (1. 5), the matrix elements of
Equation (1. 3) can be written as



1218 JOHN A.
I'(—3p+3)ad
b, = 9Qpyprl/2 25 ~ 2/ 7 B3
p = 20T Tép+1) v, (B3
pne/2)s1 7z 7
K(P) = ~ (B4)

Ko

T TEp ) (e )2
and

DAVIES
Fi(nlkg) —n(k)) = 2mad/v,) hE() €;(h)E(h)

x exp{— 2mik(R)*[(K) — N(ko) ]} 8-y 3 ps1 /2 (M E2(R))
— o Z} n;(Ikkg) N (IKKQY®(, /2 +1 (M2 (IKKG))

+ 85, Zl) &, /52 (lkky)). (B5)

1 M., Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford U. P., London, 1954), pp. 248~172.

2 J.L.Warren, Rev. Mod. Phys. 40, 38 (1968).

3 In a restricted sense, this work also applies to shell models. We
assume that all masses p, are nonzero. In shell model calcula-
tions, the shell masses are set equal to zero. Thus, this work
applies to shell models in limp, — 0 for all «, where « refers to
a shell. If we let #» shell masses approach zero, 3z optical bran-~
ches of the dispersion relations in effect disappear from our
model by approaching infinite frequency.

4 J.A.Davies and P. D. Yedinak, J. Math. Phys. 10, 1090 (1969).

J. A. Davies, J. Math. Phys. 11, 1513 (1970).

6 See, for example, A. A. Maradudin, E. W. Montroll, G. H. Weiss, and
1. P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approxi-
mation (Academic, New York, 1971), 2nd ed.

7 The dynamical matrix C(¢) used in this paper is related to the
dynamical matrix D(¢) = D(k) used in Refs. 6 and 8 by Cj;(koxl @)
= (a?*2m)G-Lx exp[2nig+(1(€) — n(Kky) D, (ko | ).

8 A, A, Maradudin and S. H. Vosko, Rev. Mod. Phys. 40, 1 (1968).

9 LetS,, and S/ be subspaces of S, (total) spanned by m and n

(3]

linearly independent vectors respectively, where m + n = 3f.
Then the intersection of S,, and S, must be at least (m + n — 3f)
dimensional. A proof of this statement is the following: There
exists a set T of 3f-m linearly independent vectors in S5 (total)
such that §,, is the set of all vectors orthogonal to every vector
in 7. Likewise there exists a set T’ of 3f-n linearly independent
vectors such that S/, is the set of all vectors orthogonal to every
vector in T'. It follows that the intersection of §,, and S, is the
set of all vectors orthogonal to every vector in the union of T and
T'’. But this union contains at most 6f — m — n independent vec-
tors. Thus, the dimension of the intersection of §,, and S, is at
least 3f — (6f —m —n) =m +n — 3f.

10 M. Blackman, Proc. Roy. Soc. (London) A181, 58 (1942).

11 R, Brout, Phys. Rev. 113, 43 (1959).

12 M. A. Nusimovici and J. L. Birman, J. Phys. Chem, Solids 27, 701
(1966).

13 See, for example, M. Hamermesh, Group Theory (Addison-Wesley,
Reading, Mass., 1962), pp. 98-101.

14 M. A. Nusimovici and J. L. Birman, Phys. Rev. 156, 925 (1967).

On the Finite Transformations of SU(3)

D. A. Akyeampong™* and M. A. Rashid”

International Atomic Enevgy Agency and Uniled Nations Educational Scientific and Cultural Organizalion,
Iniernational Centve for Theovetical Physics, Mivamare—Triesle, Italy
(Received 23 September 1970) :

The finite transformations in an arbitrary irreducible representation of the SU(3) group are obtained by con-

sidering the reduced matrix elements of the operator ¢ "™, The special case of v = 37 is also worked out
and shown to be in agreement with earlier derivations. Symmetry properties and addition theorems for the
resulting matrix elements are explicitly stated. As a useful application of the method, the finite transforma-
tions of the Weyl subgroup on the basis vectors of an arbitrary irreducible representation of SU(3) are also

given.
1. INTRODUCTION

Although the infinitesimal transformations of the
SU(3) have received considerable attention,? it is
only in the past few years that the matrices of the
finite transformations in an arbitrary irreducible
representation of the group have begun to attract the
attention of some authors.2—4 A general element U
of the group was first parametrized in the form
U = D8y, 6)Uz3(Pp, 05)U12(01, 03)U;13(¢5,01)  (1.1)
by Murnaghan.5 Here D is a diagonal matrix with
elements expi6,, €xXpib,y, exp(— i6; — i8,), and

Upy(®, o) is a 3 X 3 unitary unimodular matrix which,
for instance for p = 1, g = 2 has the form

cosd —sing exp(—io) 0
U,yo(¢, 0) = {sind exp(io) coso 0]
0 0 1
(1.2)

An alternative which is analogous to the SU(2) Euler
angle parametrization and which is more convenient
for finding the finite transformations of SU(3) has

also been obtained recently by Nelson.é His result is

J. Math. Phys., Vol. 13, No. 8, August 1972

U = e 1Ts g iosTs iy Ty pmitTy ,mivkg 1Y Ty yich Ty

x ¢'*3Ts  (1,3)
where Tg = (1/¥3)Ag, T; = 3\, (i = 1, 2, 3),and A, are
the Gell-Mann SU(3) matrices.! Since A5 and A5 are
diagonal it follows immediately that

<IMY 'e’ia3T3 e-iasz.'i)fTa II/M/Yr>

= D&M,(a:s, g, VIOyyibypy  (1.4)
and -iBT. ~iBY,

UMY e B IM'Y") = e 7 6yy0p Oypy e (1.5)
I is the isotopic spin, M the third component of I, and
Y the hypercharge. Instead of Y we shall, in the
following, use the more convenient notation §, which
is related to Y by

5 =73Y + 5(b— q), (1.6)
p and q being nonnegative integers characterizing an
irreducible representation of the group.

Using Eqgs. (1. 4) and (1. 5), the matrix elements of
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amylulrmy’)
e-iBY
M",M”/

I’ ,
X DM”’M' (—— Yy alz,- a%).

D]éM//(asy az’ ,}/)<IM//YIe_iV)\4 II’M”’Y’)
(xm

The problem then reduces to finding the matrix
elements

DhE (V) = AMY e I M'Y). (1.8)
A number of authors2~4 have carried out this calcu-

lation by observing that ¢”*""* can be expressed as a
product of three terms:

e—iw\4 _ e_i(n/z)/\fse_imzei(ﬂ/m}‘ﬁ (1.9)
and therefore evaluating the simpler matrix
ELZ gy = IMY 1" 76 |1 217Y"). (1.10)

Because Chacén and Moshinsky2 published their
result as a letter, they had to be brief and could
give hardly any details. Holland's result3 was pre-
sented in a form which makes practical applications
very difficult; we found Majumdar's and Basu's#*

2. THE Ej;% .y MATRIX ELEMENTS
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approach not easy to follow. Taking these considera-
tions into account and because our method seems
more straightforward, we rederive in Sec. 2 the
matrix elements E/;% ;1.0

However, we believe that, the direct evaluation of
Dhi4 ery(v) is no more difficult than that of the E-
matrices. The details of this are presented in Sec. 3
where it is shown that the matrix elements can be
expressed in an alternative way as a product of two
Jacobi polynomials and a Clebsch-Gordan coefficient.
The main results of the paper are Egs. (2. 11) and
(3.11). In Sec.4 we study the properties of

D52 1appdv) fOr special values of v. This enables us
to write down the orthogonality property and various
sum rules and addition theorems of the E-matrices.
In Sec. 5, we consider the finite transformations of
the Weyl subgroup of SU(3) and use our method to
obtain the effect of the Weyl reflections on the basis
vectors of an arbitrary irreducible representations
of SU(3). Finally, in the Appendix, we derive a rela-
tionship between the Racah coefficient (which is
essentially what the £ matrices are) and the generali-
zed hypergeometric function 4,F4(1). This relation
may prove useful in applications to many-body
problems.

The orthonormal basis state of SU(3) in the unitary irreducible representation (p, ¢) is7.8

|p,q;imY ) = |jmd)

30167 (= BTy T (§) et g imb(z) s

_ 1/2
=[P +a+ D N D GT s AT —m =N =5 F TG =7 — o) g =5+ o) 21
where
N, = <(2_7' + UG A m)G —m)l(j + )G — ) (p—F—8) (g —jt 5)!)1/2 (2.2)
jmb (p+j—06+1DHg+j +6+1)! ’
and § is as defined in Eq. (1. 6).
From Eq. (2. 1) one obtains the inverse relation
xj+6—r(_ j_c)j—m-ryr@)m-6+rzp'j-6(2)q-j+é
-y, <(p—1— Ug—I+8) g+ I+6+DI(p+I—5+ 1)!>1/2
jomr & (G—DG+1+1)
x C{z(j +0),2(5 — 8),1;5(j + 6 — 20), 3(2m + 2r — j — 8),m}|Im?), (2.3)
where
G Fo—NG—m—7)lri(m— 5+ ¥)\1/2
Mf"”""’( plai(p +q + 1) 2.4)
and C(j,j,j;mm  m) is the SU(2) Clebsch~Gordan coefficient.®
From Eqs.(2.1) and (2. 3) we obtain in a straightforward manner the matrix elements Ef,’,;g,j,m,é, as
Bl s = Gm8]e P | jmo)
- N <(1>—j' —06)lg—j + )@+ + 6+ DIPp+i —8 + 1)!>1/2
T Tams (p—j—0g—j+0o)!
% C{%(p—’}’), %(q_“m +6_T)’]l;%(2] +26_p—'7)’%(m+6+q—2]+’r)’m,} (2 5)
F vl =6+ + o6 =G —m—=n)(p—j =6 —7)(p+j =8 +1—w)1]2 '
with
’ = —— + ——
26" =p—qtm-—3, (2.6)

m+ o =m"+ 8§,

Substituting in Eq. (2. 5) Racah's expression for the Clebsch-Gordan coefficients, viz.,
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(j1+] .73 (]3+]1—]2)'(]3+]2"‘]1)>l/2
(]1+]2+]3+1)!

X [(1'1 +m ) —m )Wy +m )Gy ~mp) 1 (Gg +mg) (G5 —m ) 12/2

Cl1igigs mymams) = Gma,ml+m2<(2j3 +1)

XE [(]1+.72_.73 )~(j1_7'11_3)!(j2 +"¢2*3)!(j3—j2+m1+s)!
X(]3 —m2 + s)I1 (2.7)
and using in Eg. (2. 5), Eq. (2. 6) and the relation
» 1
Frim =0+ N (p+j +1 =06 —nr)l(p—056 —j'—s —7)!
pt+qgt+t1—s)! (2.8)
B R T R e e ey e P A e VI
we obtain the result
b.q -
E'm’&gmé"'(— 1)6, ]ma Grmes
3 (— 1)Prarv(v + 1)
S+ q =G+ +p+m —6—Ii+j +qg+06—m'—)!
' 1
X - - - - - .
e L O e e e W e B ) R R I (2.9)
T
where we have replaced s by the E matrices are easily derived. Thus
v=p+tq—s=2p+m—0—28 —s. (2.10) g ab o
Ej’m’é’,jmé E]I -m'=¥jm-6 = (— ].)26 26E]€,?5]/m/5/ (2 12)

From (Al) we see that Eq.(2.9) can be written as a

Racah coefficient. Thus Thus from Egs. (1. 9) and (2. 11), it is a straight-

forward matter to write down the matrix elements
g
20 D’
Ej ‘m '8, jmd IMY,I'M'Y'*

= (= D¥[(2f + 1)(25" + 1)]1/2

X W(z(20+q),5(p — 6 —m), 3q;3(20" + q);7",9)).

(2.11)

By virtue of Eq. (2. 6) the above result can be written
in various forms. This result is in agreement with
those of Chacén and Moshinsky2 and Majumdar and

3. THE D}, ;,» MATRIX ELEMENTS

The purpose of this section is to carry out the evalua-
tion of the matrlx elements (1. 8) directly. Applying
the operator e ***s to Eq. (2. 1) is equivalent to the
replacements

x — x cosy — iz siny, X — X cosv + iz siny,

Basu.4 Holland's result3 is equivalent to our Eq. (2. 5). ¥ =y, 5y > 5, (3.1)
From Eg. (2.9), the following symmetry properties of z > —ix sinv + z cosy, Z —> iX siny + Z cosv.
1
Thus
jmo ) = ¢ "M jmoy=[plal(p +q + D1]2N,,
% (_ 1)2j+6~m—27-a+c+b+d(cosv)a*b+p*q—2j~c-d(i sinv)2j+é-m+c+d-2r—a—b
yaoha rlaldlcldlG+o—7r —a)l(j—m —7r =P —7—0—¢)!
xa*c(___ )'C)bﬂiy'r@)m-éw*rz p-r—a-c(z)q%—m-r—b—d (3 2)
x G—iF6—Dim =05+ ' .
With the choice
8 =fa+c—b—d—m+38), m' =3@+c—b—d+m—0),
3.3
I'=Ya+c+b+d+m —-5+2r), m'—0 =m —35, (3.3)
xaw(_ jc)bﬂiy'r(y') m—é*rzp-r-a-c(z)q‘rmé—r-b—dbecomes xl’*é’—r(_ E)I'ﬂn’—ryf(j‘))m'-éwrz p-]’—é’(z)q—l"ré’.
Observing that
+c o
Z)E » T =z, (3.4)
a+c a-c=~(e+e) a t=-o

Equation (3. 2) can now be written as

J. Math. Phys., Vol. 13, No. 8, August 1972



ON THE FINITE TRANSFORMATIONS OF SU(3) 1221

¢ | jmo) = [plgl(p+ g + DIY2N,,
(— 1)2i-2r+o-m-t=s(— § coty)t*B(cosv)?* 4 24(i siny)2i+é-m-27
"Lz Ea p=—s 7 1[a(a + O] [a(s + A]![z(a —)]![z(s — B]1lm — 6 +7)!
% o xI’+6l—r(._ E)I"m'—ryr(&)’m'—é”rzp-—ll-&(z)q-1’+6'
[j+o—r—3e+D[j—m—r—3s+PN[p—j—0—zla—t)]a—j+06—2s—B)"
(3.5)

where a=s+m'+8, m'—6’'=m —06, and I'’=s+m'+7. (3. 6)

From Egs. (2. 3) and (3. 5), it follows immediately that
[+} S
(jm'8 1 M |jmB) = Nyps[(p — 7' — 6V Mg — § + 6N +6' +q + DIG =& +p+ D2 D % B
r.s,00 t=-¢o B=-5§
« (— 1)2i*8-m-27+s+Bg 1 v 1 (cosv)b+a72i(i siny)2i-m*8-27(§ cotw)t+B
[3a + O [3(a — O] [3(s + B[s = [ristallr + o —j —6)r + o +5 — & + 1)1’ —o&' +v)1]1/2

Clilr + a), 3(r + @ —26"), j'; 3la —7), m' —6' +7 —s),m'}

X , , . (3.7
[j+6—7—3a+D)[p—j—0—zla—=ON[ji—m—7r—3s +P)]g—j+0—3(s—p)]
The ¢ and 8 summations can be easily carried out. Since
= = = WP o=y 1) 3.8
V=L@ =@ F )y — )l ~ aiphyt 2l =% p+ Lix (3.8)
and ¢ = s +m' + &', Eq. (3. 7) becomes
(G'm'e' | jmd) = Ny, [(p— 7' — 61 g ~ 7' + 615"+ 6" + g + I — 6 + p+ 1)1]2
% E (cosy)pra-2jm/-&-2s(__§ Siny) 2j+28-27+25s
Tstri(s +m” + 0NIs+ 7 +m + v+ D=7 +m" + 7+ )" — 5 + 7)I]/2
C{z(m +08 4+ 7+ s),im’ —(‘) +r+8), i zm 6 +s—7), 3m —d +¥—s),m'}
bp—j—0o—m =8 —9)I[F+0 —7)7—7+6+q—8)'(7—m—-1’)'
X JFil—m' — 8 —s,—j—8+r;l+p—j—08—m'—35 —s;— cot2 )
X gFy(—s,—j+m+r;1+q—j+6—s;—cot? ). (3.9)

Equation (3. 9) is the desired result. It can, however, be written in a more convenient form as follows. Since
the Jacobi polynomial is related to ,F; byl0

T(n+p+1)
n!I(B+1) 2

PloB(yy = F1<( n,—n—a;B+ 1 "i }), (3.10)

Eq. (3.9) can be expressed in the alternative form

N[ =8 =+ 6N+ 8 g DI — 6+ p+ 1)1]12

Db ims V) = P—7i=0)g—j + 0!
<3 sl(s +m' + 8! 1/2
,._5<7!(m’ =8 +NNj+m'+1+s+n)(—F +m’ +s + 1‘)!)
(cosy) bru-2j-m/-¥-25(_ | sinp)2i-2m'~2r-2s ., , o, , .,
X (T=m = DG F 6= Clim'+ 8" + s+ 7), Lm’ — 5 +s+7),5;
%(’Vn, + 6/ + s —7’), %(m/* 5/ + ¥ — S),m,} PSU"m—'V—S,IZ‘j*f)—S) (COSZ V)Ps(z;ﬁ:’g"‘é’—r‘s,P’j"é""l-"é"s)(cosz V). (3. 11)

This form will prove useful for the consideration of special values of the parameter v. It is, in fact, the one we

shall adopt. However, since the Clebsch—-Gordan coefficient is a 3F,(1) function, Eq. (3. 11) can also be
expressed in an equally convenient form as

=0 +tp+r DG +3 +q+ 1)
(p—ji—0lg—j + 0!
(cosy)Ptg-2j-m!=8/"25(— j ginyp)2i-2m/-27-2551(s + m’ + §')!
rs¥W i+ —NGj —m =)W' +6 =) —m' =) (—j +m' +s +7)!

by —
D] " & jmd <V) - A{jméjvj’m’ o
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y aFol=% i —m' —s—r,—m’' + 8 —r;j' + 8 —v + Li'—m —r+ 1;1)

(s+r+ji +m + 1)
x P(j—m—r s, q-]+b+s)(cosz V) P(7 b= -5, p- &m/ - §-8)

stm’+ ¥

Note added in proof: Equation (3.11) and its equi-
valent can be written in a more symmetrlcal form by
means of the replacements §—=s + sm’ + 16 and
roj—im+ 3 —r=j—3im'+io—r.

4. SPECIAL CASES AND ADDITION THEOREM

An important check on our work is the evaluation of
the special value of v = — /2 in any of the three
equations (3,9), (3. 11), and (3. 12). Using Eq. (3. 11),
we easily obtain the result

D ms = 7/2) = (— 1)y B (4.1)

= mb?

which, as expected, is of the same form as Eq. (2. 11).
Also
D]'t')"'?'b’vj”‘b (M= (- I)Pﬁrm”éD Jp 72’5 jmd ©)

N (4. 2)
= (“‘ 1)9 am 6]"]'674;’méé’6'

Thus since p + g + m — 6 is an integer, the D-matrix
is periodic in v with period 27.

The orthonormality condition of the E-matrices
follows from Eq. (1. 9). Using that equation, we have

2 ( mé ,jtm"s Ir) E I/mll{)llj sty (4' 3)

i'm nyr

6] i’ ai‘mm ! ééé’ =

where the dagger denotes Hermitian conjugation. We
then obtain the generalized form of the orthonormality
property of the Racah coefficients,?1

2(27" +1)[(25 + 1)(27" + 1)]1/2

;B8 55, =
X W(5(256 + q), 2(p — 6 —m), 34,
Hp +m' — 85", DW((26" + q),
Hp—06 —m'),5q, 3(p+m—0);3", 7). (4.4)

Again by putting v = — 7/2 in Eq. {1. 9) and using
Eq. (4. 1), we obtain the sum rule

YALOE N M B -
('“ 1) E, Gem g ,s T

by ¥
G (EJ T 160G " m "&”)

'Rl
Xy =) X ER S gsss (425

which in terms of the Racah coefficients reads

(= 17" W ((20 + 4), 5(p — & +m),
3, 3(p —m — 8); 5, §)
=T (— 1)p-a263(25" + 1)
jll
X W(3(28" + q),5(p — 6 —m'), 3q,5(p + m’ —8");
J, iW(E(26 + @), 5(p — & —m), 3q,3(p +m — B);

3" - (4.6)

Equations (4. 4) and (4. 6) are the usual sum rules of
the Racah coefficients which have now appeared quite
naturally in our analysis.
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— 8"+ )

(cos2 v). (3.12)

T
5. THE FINITE TRANSFORMATIONS OF THE
WEYL SUBGROUP

As an application of the above method, we wish to con-
sider the finite transformations of the Weyl subgroup
on the basis states of an arbitrary irreducible repre-
sentation of SU(3), since this is probably the most
immediately useful set of finite transformations of
SU(3).12 As is well known, invariance under SU(3)
implies invariance under Weyl reflections.

The matrix representations of the Weyl reflections
are denoted by W,, W,, W, and these are defined as

010 100 00 1
Wy=—{100 W,=—{001),W,=—{010]}
001 01 100
where (5.1)
wi=wi=wi=1 (5.2)
and
Wy =W, W, W,. (5.3)

Thus the Weyl reflections and their distinct products
form a discrete group of order 6, isomorphic to the
symmetric group S, on three objects and called the
Weyl group of SU(3).

Having described the method of approach in detail in
Secs. 3 and 4, it will suffice at this stage to state
only the relevant results.
Thus using (5. 1), we see that
Wl: (x;y,z: 9—533_" Z) _>(_'3'7"' Xy — Z;—j‘jy— &:_E),
WZ: (x)y’z’ ’—C;J_’UE) - (_‘ Xy — 2, — Y, — 9_57— 2""5}_),
W3: (x,y, Z, ;C’ 5:) .Z-) - (— Ry Yy Xy — 25—5;— ;C)'
(5.4)
and therefore the matrix elements of W, W,,and W;
are easily obtained as

(G 6" Wy [jm o) = (— 1)8° 9558, 8,1 b5 (5. 5)

(3'm'6"| Wy |jmd) = (= VPELL, s (5.6)
and
<]‘,m’6’|W3 l]WI,G) ( 1)] iJ*aHmE G-l j-m b (5 7)

The three matrix elements clearly satisfy the opera-
tor equation {5.3). That Eq. (5.5) is indeed correct
follows since W, is just a reflection in the isospin
space and as such only introduces a phase. Notice
also the similarity between Eq. (4. 2) and Eq. (5. 5),
the former being just a reflection on the x — z space.
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APPENDIX: THE RACAH COEFFICIENT AS A ,F4(1)
FUNCTION

Since there are algebraic and numerical tables13
available for the Racah coefficient, it may be useful

W(abcd, ef) = A(abe)A(cde)Alacf)A(bd)

1223

to show directly a relationship between these coeffici-
ents and the ,F;(1) generalized hypergeometric func-
tions for which no such tables are readily available.
The advantage in expressing the Racah coefficient as
a 4 F5(1) function is the ease with which one can prove
the properties satisfied by the former.

The Racah coefficient is defined as14

(= 1)arorerdn(n + 1)1

n

1

“@rdtetf—mp tcrets—n!

a+b—)la—b+c)l—a+b + )

where A(abc) = ( (a+ b+ c+ 1)

Letv =a+ b+ ¢+ d—n Then we can write (Al) as

W(abcd, ef) = Alabe)A(cde)A(acH)A(bdf)Y)

v

> 1/2

xE(n-a—b—eWn—c—d—e}!(n—a—-c—f)!(n—b—d—ﬂ!(aJrb+c+d—n)!

(AD)

(A2)

(—va+b+c+d+1—)!

“Ve+f—c—b+Vle+f—a—d+Nlctd—e—-DN@a+b—ec—Nptd—T—Dlatc—F—n1"

(A3)
Using the formula
T'(z —v) =(— 1) I~z +1) (A4)
T T(z) TCz+ 0+ D
and introducing the notation
(a)n=£(%—(%n—), (A5)
Eq. (A3) becomes
_ (@a+ b+ c+d+ 1) Alabe)Alcde) Alacf) Albdf)
Wlabed, ef) = g =y ecr d=— @ c =PI T d= e T F—a— De FT=b =)
(e—c—dye—a—-0b)(f—b—a)f—a—c),
X}; vi—a—b—c—d—-1fetf+1T—-p—c)le+tf+t+1—a—d),
. (a+ b+ c+d+ 1) alabe)a(cde)alacf)Albdf)
TlaFb=—elc+td=—ellatc—NIb+d—DNHet+tf—a—dlle+f—b—rc)!
e—c—de—a—bf—b—d,f—a—c;1
X4F3[——a—b—c—d—1,e+f+1—b——c,e+f+1——a-—d} (A6)

which is a terminating Saalschiitzian series.15 Properties of such series are well known.

Note added in manuscript: After completion of this work, the authors came across a paper by Minton16 in
which he also derives Eq. (A6) and then uses it to obtain a new (unphysical) symmetry of the Racah coefficients.
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Applications of Function Space Integrals to Problems in Wave Propagation in Random Media*
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Two problems in wave propagation governed by the reduced wave equation with a random refractive index are
studied. Problem (a) is concerned with radiation from a source in an infinite medium, and problem (b) pertains
to the scattering by a random half-space at high frequencies. By transforming the reduced wave equation into

a generalized heat equation, it becomes possible to express the moments of solutions in terms of Wiener inte-~
grals. Concrete results are obtained for certain special cases. By systematically approximating the functional
integral representation for the moments, various perturbation equations come forth. Among them is Kraichnan's
direct interaction approximation. By examining the errors involved,the accuracy in each approximation is
ascertained and the nature of the approximation becomes transparent.

1. INTRODUCTION

The problems of wave propagation in random media
have been subject to intensive study in the past de~
cade. Mathematically, most works have been con- .
fined to the problems of time-harmonic wave pro-
pagation governed by the wave equation with a random
field of refractive index which is independent of time.
Due to the well-known difficulty in obtaining exact
solutions,nearly all problems have been analyzed
under the assumption that the random fluctuation of
the medium is small. Then the perturbation methods
are applicable., For a comprehensive account of these
methods and their applications, one is referred to two
important papers by Kellerl.2 and a recent paper by
Papanicolaou and Keller.3 Concerning other methods
and various physical applications, they can be found
in an up-to-date review article by Barabanekov,
Rytov,and Tatarski.4

The present work was motivated by an interesting
article by Frisch5 who showed that the radiation pro-
blem for the random reduced wave equation can be
transformed into a complex heat equation with a
random potential. The random solution can therefore
be written in terms of a Wiener integral. However,
no concrete results were obtained from that integral
representation. On the other hand,the method of
parabolic approximation has become prominent in
random scattering problems due to Chernov® and
Tatarski.? In view of similarity in equations,these
two problems are amenable to the same treatment.
By means of the Feynman-Kac#®9 formula, the exact
random solution can be expressed in terms of a
Wiener integral from which various moments of the
solution can be derived. In the process,it is expedi-
ent to interchange the order of functional integration
and mathematical expectation. However the Wiener
integral involved is not an integral in the measure-
theoretic sense as pointed out by Cameron10 who
termed it a sequential Wiener integral. It is for this
reason that Fubini's theorem for justifying the inter-
change of the order of integrations ceases to apply
and the computation has to be carried out in a formal
manner. Nevertheless, judged by the fact that our
results agree with certain known results obtained
previously by other procedures,this interchange
does not seem to lead to any error.

The principal aim of the present paper is to extract
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some concrete results from the functional integral
representation of the solutions related to the two
physical problems indicated above. Concerning the
problem of scattering by a half-space, one generali-
zes the results for the correlation functions on one
plane to that on different planes, At high frequency
the asymptotic results of the first two moments are
obtained for this problem as well as for the radiation
problem for the general correlation function of the
random refractive index. The most interesting re-
sults in this paper are the revelation of the true
nature of Kraichnan's direct interaction approxima-
tion and the clarification of interconnections between
various known approximations as applied to a random
parabolic equation. As it stands,Kraichran's deriva-
tion of his nonlinear moment equations based on physi-
cal argument is very difficult to justify mathemati-
cally. The present approach yields a convincing evi~-
dence of the validity of Kraichnan's approximation.
This may provide a firm basis for the rigorous proof
of his method in the future.

Formulation of the problems and transformation into
a complex heat equation are given in Sec.2. Then,in
Sec. 3,the exact solution to this random heat equation
is obtained by using the Feynman~-Kac formula, and
the statistical moments of the solution are expressed
as Wiener integrals involving the characteristic func-
tional of the given random field as their integrands.
For computational convenience, the results are speci-
alized to the case of a Gaussian random field in Sec.
4. The results for the stationary,homogeneous Gaus-
sian field are also obtained there. When the Gaussian
correlation function is assumed to be delta-correlat-
ed in time, the exact evaluation of certain functional
integrals become possible. In particular the first two
moments agree with those obtained by Chernov®é and
Tatarski? by different methods. These results are
contained in Sec.5. In the following section the differ-
ential equations satisfied by the moments of the solu-
tion are derived. In the process,the relation of the
two-time, two-point correlation function to the simul-
taneous two-point correlation function is found. The
possibility of reducing the evaluation of multiple-time
moments to that of simultaneous moments is pointed
out. At high frequency,the asymptotic evaluation of
the functional integrals for arbitrary correlation func-
tions is performed in Sec.7. Results are obtained
when the scale of random fluctuation and the wave-
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Due to the well-known difficulty in obtaining exact
solutions,nearly all problems have been analyzed
under the assumption that the random fluctuation of
the medium is small. Then the perturbation methods
are applicable., For a comprehensive account of these
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important papers by Kellerl.2 and a recent paper by
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The present work was motivated by an interesting
article by Frisch5 who showed that the radiation pro-
blem for the random reduced wave equation can be
transformed into a complex heat equation with a
random potential. The random solution can therefore
be written in terms of a Wiener integral. However,
no concrete results were obtained from that integral
representation. On the other hand,the method of
parabolic approximation has become prominent in
random scattering problems due to Chernov® and
Tatarski.? In view of similarity in equations,these
two problems are amenable to the same treatment.
By means of the Feynman-Kac#®9 formula, the exact
random solution can be expressed in terms of a
Wiener integral from which various moments of the
solution can be derived. In the process,it is expedi-
ent to interchange the order of functional integration
and mathematical expectation. However the Wiener
integral involved is not an integral in the measure-
theoretic sense as pointed out by Cameron10 who
termed it a sequential Wiener integral. It is for this
reason that Fubini's theorem for justifying the inter-
change of the order of integrations ceases to apply
and the computation has to be carried out in a formal
manner. Nevertheless, judged by the fact that our
results agree with certain known results obtained
previously by other procedures,this interchange
does not seem to lead to any error.

The principal aim of the present paper is to extract
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some concrete results from the functional integral
representation of the solutions related to the two
physical problems indicated above. Concerning the
problem of scattering by a half-space, one generali-
zes the results for the correlation functions on one
plane to that on different planes, At high frequency
the asymptotic results of the first two moments are
obtained for this problem as well as for the radiation
problem for the general correlation function of the
random refractive index. The most interesting re-
sults in this paper are the revelation of the true
nature of Kraichnan's direct interaction approxima-
tion and the clarification of interconnections between
various known approximations as applied to a random
parabolic equation. As it stands,Kraichran's deriva-
tion of his nonlinear moment equations based on physi-
cal argument is very difficult to justify mathemati-
cally. The present approach yields a convincing evi~-
dence of the validity of Kraichnan's approximation.
This may provide a firm basis for the rigorous proof
of his method in the future.

Formulation of the problems and transformation into
a complex heat equation are given in Sec.2. Then,in
Sec. 3,the exact solution to this random heat equation
is obtained by using the Feynman~-Kac formula, and
the statistical moments of the solution are expressed
as Wiener integrals involving the characteristic func-
tional of the given random field as their integrands.
For computational convenience, the results are speci-
alized to the case of a Gaussian random field in Sec.
4. The results for the stationary,homogeneous Gaus-
sian field are also obtained there. When the Gaussian
correlation function is assumed to be delta-correlat-
ed in time, the exact evaluation of certain functional
integrals become possible. In particular the first two
moments agree with those obtained by Chernov®é and
Tatarski? by different methods. These results are
contained in Sec.5. In the following section the differ-
ential equations satisfied by the moments of the solu-
tion are derived. In the process,the relation of the
two-time, two-point correlation function to the simul-
taneous two-point correlation function is found. The
possibility of reducing the evaluation of multiple-time
moments to that of simultaneous moments is pointed
out. At high frequency,the asymptotic evaluation of
the functional integrals for arbitrary correlation func-
tions is performed in Sec.7. Results are obtained
when the scale of random fluctuation and the wave-
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length are of the same order of magnitude. In other
cases,one finds that the stationary path can be com-
plex, The asymptotic evaluation is not feasible. When
the previous results are specialized to the radiation
problem, the results for high frequency radiation fol-
low. This is shown in Sec.8. An attempt is made in
Sec.9 to approximate the integrands of functional in-
tegrals in order to derive differential equations for
moments. One of such approximations leads to Krai-
chnan's direct interaction equation for moments. In
Sec. 10 it is shown that certain approximate integrands
yield the results obtained by perturbation methods,
such as the Born approximation,the method of smooth
perturbation5 and the two-time method.3 The connec-
tion between various perturbation methods is thus
established. Finally remarks are made concerning
the use of the functional integral approach to stochas-
tic wave propagation problems in general. Possible
extensions are also discussed. In the appendices,
some details in the main body of the paper are illu-
strated.

2. FORMULATION OF PROBLEMS

Let us consider two problems in stochastic wave pro-
pagation mentioned in the introduction. These pro-
blems will be formulated briefly here, The original
versions can be found in Refs 5,and 6 and 7, respec-
tively.

Problem a: the vadiation problem in a random
medium: Let v be the solution of the radiation pro-
blem

Av + B252(r)v = 6(r), (2.1)
lim ]r|< v _ iknv) =0. (2.2)
[rf—>o0 alr]

This describes the radiation from a source of unit
strength located at the origin r = 0. The refractive
index n(r) is a given random field, The wavenumber
% is taken to be complex with Im{k} > 0. At the same
time, we introduce the following initial-value problem

WLt >0, (2.3)
u(O,r) = 5(1‘), (2-4)

where p is a random field to be specified. If one de-
notes the Laplace transform of u by & defined by

a(s,r) = f0°° u(t,r)e-stdt, Re{s}> 0, (2.5)

a Laplace transform of Eq. (2. 3),noting (2.4),yields
Au + (iks + p)u = 6(r). (2.6)
The above equation reduces to Eq. (2.1} if one sets
n2(r) = 1 + k~2u(r),
o(r) = (i) ta(r, — i) = ()1 [ * ult, r)e*tat,
Im{k} > 0.

(2.7

(2.8)

In this way the original radiation problem can be em-
bedded in the initial-value problem (2. 3) and (2.4).

Problem b: scatteving by a vandom half-space:
It is supposed that a time-harmonic wave propagates
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in a medium which is homogeneous for x < 0 and
randomly inhomogeneous for x = 0. The variable x
denotes the first component of the space variable x

so that x = (x,r),where r is the transverse variable.
The wavefunction v(x) satisfies the reduced wave equa-
tion

Av + R2n2(x)v =0, x>0, (2.9)

Av+k2y=0, x<0 (2.10)
in which v and v, are continuous at x = 0 and v is out-
going at infinity. In this case the random refractive
index is assumed to be expressible as

n2(x) =1+ n(x,r). (2.11)
For a wave f(r)e?#* incident from the left half-plane,
one may seek a solution, for x > 0,in the form

v(x) = u(X)et*s, x> 0, (2.12)
Upon substituting (2. 12) into (2. 9) and neglecting the
term u . in the resulting equation,one obtains

ou i

= (A + pu,
o 2k(T ¥

where A, stands for the transverse Laplacian and

x> 0, (2.13)

u = k2n(x,r). (2.14)
The correct condition at x = 0 is the “initial” condi-
tion

u(0,r) = f(r). (2.15)
The reduction of the full problem to the initial-value
problem (2.13) and (2. 15) is known as the parabolic
equation approximation, which is valid for large .67
It is worth noting that the approximation is a singular
perturbation. A more systematic expansion in the in-
verse power of 2, which takes into account back scat-
tering, was given by Keller, Papanicolaou and the
author,11

It is seen that the solutions to the above physical pro-
blems, to be abbreviated as problem (a) and problem
(b) in the sequel,are derivable from the correspond-
ing solutions to an initial-value problem for a gener-
alized, random heat equation. In problem (b),x is the
timelike variable and the random field p is therefore
“time” dependent,while p in problem (a) is not. The
other noticeable difference is in the spatial dimen-
sions of these two problems—three dimensions in pro-
blem (a) and two dimensions in problem (b).

3. SOLUTIONS BY WIENER INTEGRALS

To treat problem (a) and problem (b) concurrently,
let us consider the fundamental solution u of the
generalized heat equation in # dimensions:

27“=§-[A+u<t,r,w>]u, t>0, (3.1)
u(0,r) = 6(r — ') (3.2)

where o is a complex number with Re{a}> 0, r and
r’ are two points in R, (n-dimensional Euclidean
space) and A is the Laplacian in r. The random field
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p(t,r,w),for each fixed w,is an element of certain
set of functions S defined over R, X [0,%],and w de-
signates an elementary event in a sample space 9.
It is supposed that a probability measure P is de-
fined over the o-field of events in . For any func-
tional ¢[u] which is defined in S and measurable with
respect to P, the expected value of ¢ is denoted by
(¢[1]>. By taking Q@ = S, this is an integration of ¢
over S given by

U = J; olulP(dn).

Assuming that p is stochastically continuous,a con-
structive method of specifying the random process

p is to exhibit its characteristic functional F[A] de-
fined as

<exp< f f (t,r)u(t,r, w)dt dr>>

The integral in the above exponent is usually taken to
be a Stieltjes integral. Therefore,the parametric
function A(Z,r) is allowed to be a generalized function.
From F[Ar],various moments of p can be obtained by
taking functional derivatives.12

(3.3)

(3.4)

For 0 =< 7 =< ¢,let z(T) be elements in the space c(0,¢)
of continuous, n-vector-valued functions with z(0) = 0.
For a suitable functional G[z],e.g.,an analytic func-
tional,the sequential Wiener integral (or simply,the
Wiener integral) of G generated by the heat equation

oy o

= 3.5
7 5 A t>0, (3.5)
Y(0,r) = 5(r) (3.6)

is known to exist.10 Let {7,,7,,...,7,} be a partition
of [0,t] sothat 0 =7, < 7, <7, <+ <7, =¢and
let Z{Ti) = §,. To approximate z,one introduces a
polygonal function z, ,(¢) such that

(3.7

z, (1)=&, i=0,1,2,...,m,

and z_ , is linear on [7,_,,7;]. Then the sequential
Wlener integral is defined as the limit, if it exists:

= (m
EZ{G } maxl‘r —r 1|—>0 ‘[Rn dgl ‘[Rn dg"‘ G[ZT'E]
1=<j=
(Ej - %-1)2
m exp<— 2a (7, = 7p) >

x Il (3.8)

=1\ [27a(T;— 7']._1)]”/2
Let E,{G[z]|z € ¢y} denote the Wiener integral over

a subset ¢, of ¢. For computational purposes,it is
found convenient to write this integral symbolically as

E{G[z]|z € ¢y}

f,_.o Glz) exp(— (1/20) [ ['z(r)]%ir)dwz
= . (3.9)
/ exp(— (1/20) f [2(1')]2d'r>dwz

According the Feynman—Kac formula, the solution of
(3.1) and (3. 2) for a rather general class of y,can be
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represented as a functional integral
u(t,r,r’',w) = E |Eexp<%f0t p('r,z('r),w)d‘r> Jz € ¢(0,1),

(r—1)2/20(t — 7))
[27a(t — T)]»/2

which is an integration over all continuous paths
starting from the origin at 7 = 0 and reaching r — r’
at 7 = {. To remove the terminal condition on each
path, Eq.(3.10) can be rewritten as

= EZ l:exp(.g_ fot

X p(r,2(7) + r’,w)dr>6[z(t) —r+ r’]}, (3.11)

exp| —

z(t) = ] ) (3.10)

u(t,r,r’,w)

where § is the Dirac delta function.

If one sets p= 0, r’ = 0 in (3.11), it yields the solu~

tion of (3.5) and (3.6) in the form

vit,r) =E{6[z(t) — r]} = r2/20¢)
(3.12)

This simple formula will be found useful later. Next,
the statistical moments of the solution will be deter-
mined. To this end,one defines the nth moment I,
of the fundamental solution to be

(2nat)™=/2 exp(—

L,(ty,tg,...,t,;01,T5,...,T,)

(uy(ty,rduglty, rs) ooon,(t,r,)).,  (3.13)

Here the following convention has been adopted:

u, for oddj
u, = » (3.14)
u, for even j

where u means the complex conjugate of «.

In general the arguments in I', need not be distinct.
For example, I,(t,t;1,,T,) = Ty(¢;r,,T,) Will be
called the simultaneous (or one-time), two-point sec~
ond moment of # and so on. Let us first compute the
first moment (or the mean) of u:

Fl(t, r) = <u(t,1‘,w)>

= <E [exp(% fotu(‘r,z(‘r),w)d'rﬂ 8[z(¢) ——r]>, (3.15)

where, without loss of generality,r’ in (3.11) has been
set to zero and u(t,r,0,w) = u(t,r,w). To simplify
(3.15),0ne formally interchanges the order of the

() and E,;for the reason given in Sec.1,it is not
easily justifiable. Nevertheless, it is assumed here
and hereafter that this kind of interchange is always
permissible. Then (3.15) can be rewritten as

r,(t,r)=E, <exp[§fp('r,z(T),w)dﬁ>6[z(t) —r]t.
(3.16)

If one lets

A —T,r—2) = (0/2)8[r — z2(T)]H({t — 7), (3.17)

where H is the Heaviside function,then,in view of
(3. 4),the following relation holds:

Fxyl= <exp <_c2)z_ fot w(r,z(r), w)d7'>>.

(3.18)



APPLICATIONS OF FUNCTION SPACE

Upon using (3.18) in (3. 16), it becomes

T, (¢, 1) = E{F[x]6[z(t) — r}}. (3.19)
Introducing X,, defined by
Aplty — Tty — T3T — Z1, T — Zy)
= (a/ 20)8[r — z,(MH(t; — 7)
+ (0/20)5[r — zo(T)|H(t, — T), (3.20)

the two-time, two-point second moment (or the corre-
lation function) of # can also be expressed in terms of
the characteristic functional as follows:

Tolty,ta;Tq,Tp) = <Ezl[exp<%fotl Ty, 21(71),w)dT1>

ot el £, ol S
X u(Tz,zz(Tz),w)drz) 6[z5(t5) — rz]]>
= Ezl.l zz{F[)‘Z]a[zl(tl) - r1]5[z2(t2) — 1'2]} . (3.21)

Here £, . = ES E, means a double Wiener integra-
tion, where Ez1 is the Wiener integration defined in

(3.8),and EZZ is the same integration with a parame-
ter @. In general the meth moment can be written
down in a compact form

rm(tl’tZ"'
=E, yrora {FV,104(2,() — 1]
X 8[zy(79) —Tp).-- 8(z,,(7,) — 1,1},

cst3T1,Toy .., T,)

(3.22)

which is an m-fold Wiener integral. The parameter
function A, in this case is defined to be

Aty — Tytg — T, ooyt — T;

T — 2y, T —Zy,...,T —Z,)
m

- ;};:IL a;d[r — z; ()] H(t; — 7).

(3.23)

9]

To Ez]- and oy, the convention (3.14) applies.

4. GAUSSIAN RANDOM FIELD

Let p be a Gaussian random field with the mean func-

tion a(t,r) and the covariance function R(¢,,f 5;T,,T,).

Then the characteristic functional assumes the form

F[A]= exp(i f:fR A7, r)a(T,r)dTdr

[ee] Q0
SETANA ]Rn fRnA(Tl,rl)h(‘rzrz)R(’rl,Tz;
rl,rz)d‘rld'rzdrldr2> . (4.1)

In this case,the moments of the solution given by
(3.19),(3.21),and (3.22) yield

Tt =E, [exp (g [ ar,a(rar
2
+ gg—fot fot R(7q, Tp52,(7y),

zz(rz))drldTZ,) 8z(t) — r]} , (4.2)
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Tylty,tp;Tq,Ty) = Ezlzz[expé—lf;l a(7,2,(7))d7

+ g— fO‘Z T, 2y(7))dT
2
+ %— fotlfotl R(71,75;2(71),2,(1))dT,dT,
a2
+ %fot2f0t2 R(71,79;24(T,),25(Tp))dTdT,
+ a—f'f(;lféz R(TpTziz1(71)vzz(72»d71d72>

X 8[z4(t;)—T,]8{Z5(t,) — 1'2]:' , (4.3)

and

T, (tystayeeestpiT1iToyeee,Tp) |
m
=E ... zm[expé Zl a].f(:la(T,Z];(T))dT
=
m
1 2 [t b .
+ 8]?10[" fOJfOJ R(Ty,Ty;2,(7,),
z; (T )dT,dT, 320 0;a,
<k
t;
><foif;kR(Tl,Tz;zl(rl),zz(Tz))dTld72>

X8[21(7;) — r1]06[24(Ty) — Tp)- -

LCAEEN]

The symbol qu means summation over all possible
pairs of distinct indices without repetition. For other
random processes with known characteristic func-
tionals, one can, of course,write down the moments of
u in terms of Wiener integrals in a similar manner.
When the process p is homogeneous and stationary,
the mean function @ reduces to a constant. The covari-
ance function depends only on the difference in space
and time variables, respectively,

4.4)

R(ty,ty;r,,v,) =R(t; — ;1 — Typ). (4.5)
In this case,the results (4, 2)-(4.4) simplify to

2
T,(t,T) = e @2)aE, [exp(%fotfotR(rl — Ty,2(T;)

 a{ry)ldr 75 ofa() — f], @

Tylty,t9;r,Ty) = e(a/z)(wa)tEZIZ2 [exp<%a2f0t1f0t1
X R(T) — T5,24(T) — 2(7,))dT,dT,
+ 382 [ [ R(T = 7,,2,(7)) — 2,(7,))d7,dr,
+ i C_rfélféz R(T{— Ty,2,(7;) — Z2(T2))dT1d7'2>
x 6[z4(t,) — r ]8[z,(¢,) — rz]]

and

(4.7)

S )
_ e(a/z)z]’?i1 %t o ex lf) azftjftj
Z 2y 00y, p 8]_:1 799V

X R(T, — Ty, 2, (1) — z; (7'2))¢7l'r1d7'2

| AN O PYIN 3 ST T TRE
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+ 42 oo, JIF R(Ty — Ty, 2(7))

i<k

— z]z(rz))wdTlde)é[,z 1(T1) — 1]
) 6[2 m(Tm) - rm]i‘ .

It is seen that the mean value of p only introduces an
exponential factor in each moment of . The remain-
ing part of the paper is devoted exclusively to the
case where p is a stationary,homogeneous, centered
Gaussian process,although some results may be ex-
tended to other Gaussian processes.

X 8[24(T,) — T, - (4.8)

5. THE CASE OF DELTA CORRELATION IN TIME

It is supposed that the mean value a = 0 and the cor-

relation function R is delta correlated in ¢ so that
R(t, —ty,T1 — Ty) = 8(t; — ty)g(ry — Ty). (5.1)

In the context of problem (b),this means that, with

{ = x,the uprocess has the characteristics of a white

noise in the x direction. Using (5.1) in (4.6) with

a = 0 and noting (3.12),there results

T,(t,r) = E {exp| 3 @2 (0)¢][z(t) — r]}

= Y(t, r)ele®R)sO (5 2)
where  is defined by (3.12).
For an arbitrary initial condition u(0,r) = f(r),the

mean solution,denoted by I'; ,, can be constructed
from (5.2) as follows:

T, 4(t,1) = D@t Yit,r — r')f(r')dr"
' R (5.3)

Similarly, the second moment (4.7) becomes
(1/8)2(0) (o £, +o%t,)
Lolty,ta;T1,Tp) =
1 = (e
X Ellzz [exp(; aafo gz (1)
— 2,(M7) ofzaty) - 1 Jelza(ty) — 1)),

where ¢,, = min {¢,,7,}.

(5.4)

For arbitrary initial data f,it is found that
(1/8) g0 (Pt +oPty)
T oty ty;riTy) = e v

liexp(al aaf 2g(z,(7) — z4(¢y)

—3y(1) + 2ylty) + 1, — rz)d-r>

zl(t1)]f[r2 Zz(tz)]:l .

In general it is difficult to evaluate the above double
integral in a closed form. This is,however possible
if t; =, = ¢ and f has the property of a plane wave in
R, so that

f(rl).?(rz = h(l‘l - 1‘2).

To see this,one has to effect a change of the variables
of mtegra’uon in (5.5). Let two new variables p; and
P, be defined so that,for 7 = ¢,

x flry — (5.5)

(5.6)

P1(T) = z]_(T) - Zz(T), (5.7)
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Po(T) = 24(T) + Z4(7). (5.8)
Then it is a simple matter to check that p, and p,
are real,dependent Wiener processes with a common
variance parameter 2Re{a}. In what follows,the
terms, such as mathematical expectation and condi-
tional expectation in probability theory will be used
analogously to their counterparts for a real Wiener
process. Let I; denote the integral appearing in the
right-hand side of (5.5) for ¢,, = ¢{. That is

I, =E, [exp <i oa fotg(zl(‘r) —2z,(8)
—2y(1) + 2y () + 1y — rz)d‘r> 1lr,
= 2,(0)7lr, — 20)]] (5.9)

which becomes,after a change of variables according
0 (5.7),(5.8) and invoking (5. 6)

E, o, [exp(% a&fot g(P1(7) —p1(®)
+r,— rz)dr>h[r1 —Ty— Pl(t)]il

=E p, (8

11=
(5.10)
2, |€X0( §aaf g (py(7) -

+ry— I‘z)d7'> Hry =13 = Dy (0]E, 1, (1) jl ’

In obtaining the last expression,one made use of an

identity in'mathematical expectation E ns Epl-
Eplp 15, where E | p, Mmeans the conditional expecta-

tion with respect to p;. Since E ‘o, (1) =1, Eq.(5.10)
reduces to

I,=E, [exp(i‘aa fot gP(T) —pyt) + Ty — rl)dT>
X h{r, — Ty~ pl(t)]}- (5.11)

In terms of the symbolic integral as shown in (3.9),
I, takes the form

I,(t,ry,ry;0) = L(O’t) exp <%otc-! fot &[p1(1) — p(®)
1 .
+1ry—ryldr — & fot [pl(r)]Zd'r)

X h{ry —ry—py(8)]d,py, (5.12)

where o; = Re{a}.

For problem (b),one has @ = 1/ék. When & approa-
ches real axis from above, a tends to the imaginary
axis from the right,i.e.,a,— 0*. The limit of I, as
a,— 0* or 1/a;— © can be computed as follows

Hmo Iy (t,7q,1950)

i L=t
:(1/i~:§rloofc(o.t) exp (4 aa [ g[py(7)

—_ P1(t) +r,— rz]dr — 071_1 fot [I')l(-r)]zm)

X h[ry —ry — p1(t)]dwp1

_ h(l'1 _ rz)e(d§/4)g(r1-r2)t’ (5.13)
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where o, = Im{a}. The justification of the above re-
sult is shown in Appendix A. Formally this result
can be easily obtained by using the method of station-
ary phase to be discussed in Sec.7. Inserting (5.13)
in (5.5) and setting o, = i1, one obtains

-(1/4P) (0 -gr -1,)]
(5.14)

For f = 1,hence % = 1,the results (5.3) and (5. 14) re-
duce to that obtained-by Chernov® and Tatarski.”

T, olt,vq,Ty) = h(r; —ryle

The exact evaluation of the higher moments is more
difficult. The corresponding expression for the mth
moment is given by

T, (t1stay eyl ;T1sTosee,T,)

= E"lzz ceeZy [exp <%§ aJ'zg(O)tj
i=1
+3 .Ek ajakfotjg(zj (1) ~ 2 k('r))dr)ﬁ[zl(tl)
]<

= llaglty) = xpl oz () — )
(5.15)
Here,for convenience,the sequence t;, j = 1,2,...,
m ,has been taken to be nondecreasing so that {; =< ¢,
=< -+ =< t,. In particular,when ¢; = ¢, = -+* = ¢
(5.15) becomes

m?

[, (t,r,Ty,...,T

m) - Ezlzz oeeZy

x[exp <§ ]2;1 afg(O)t + :}jZ()k a akfotg(zj B
— z,(7))d7 ) 5[z, (t) — r]6[Z,(2)

— Tyl - 8[z,,() — rm]] .

To evaluate the above integral, one borrows an idea of
Kac's13 which suggests the use of the method of differ-
ential equations.

(5.186)

6. EVALUATION OF I' , AND DIFFERENTIAL
EQUATIONS

To derive a differential equation for I',,one will use
an operational method which seems to yield the desir-
ed results more readily. This approach was first
used by Donskerl4to verify the Feynman=-Kac formula
for the nonrandom heat equation. For the purpose of
illustration,the equation for T', will be derived in de-
tail. The equation for higher moments can be obtain-
ed in a similar fashion. One starts with the following
identity

exp <Bf; g[z(T)]d"r): 1
tB fot &(z(0)] exp (Bfoog[z(r)]dr> do. (6.1)

- 2,
Multiplying Eq. (5.4) by ¢~ /8¢ @@ 47@6) yypy 4
= {, and invoking (6.1), it yields

- 2, o
o (/8802 aztz)rz(tptz;l‘prz)
= Ezlzz {o[z4(¢,) — r1]6[z5(t,5) — rz]}

b [T st

(6.2)
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— 2,(0)] exp (%O'_—fo"g(zl(ﬂ
- zz(T))dT> 6z, (t,) — r,]6[Z,(t,) — rz]] do.

In view of (3.12),it is found that

T(tq,tp;Tq,Tg) = Tylty,ta;rq,Ty)
— Yty T )P(ty, Ty) [A/BE(0 (@8)55%t)

aa (1/8)4(0 (3 tralt,) (8
= —10e
4(2m)n fO f‘[!,,

% e—i(ﬂl-rlﬂlz -rz?dﬂlduz f fR glpy

- Pz)ei(pl.pf"z .pz)Ezlzz [eXp< 245‘; foog(zl(T)
— zz(T))dT> 8[z4(0) — p;]6[z5(0)
- Pz] exp[iP'f (Zl(tl) - Zl(O))

+ ipge(zy(ty) — zz(o))]]dpldpzdo. (6.3)

In obtaining the above expression,use has been made
of the formal representation of the delta function

8(r) fR Ty,
n

1
= (6.4)

By the property of independent increments for a
Wiener process and the definition of T', given by (5.4),
(6.3) can be simplified to give

aa -
T(ty,895T1,Tg) = fotlffﬂ Yty — 0,pp — T Wy
n

{1/ 880 [(t1-0) 4 (£ 0)]

— 0,pp — rz) &lpq

— pa)T5(0, P2, py)dpdp,do. (6.5)

In view of (5.2) and (6. 3),o0ne has

Tylty,ta5Tq,T5) = Ty(ty, 14T, (t5, 1))

+ %qftlff Tyt — 0,y — 1T (2t
0 R,
—0,pp— rz)g(Pl - Pz)

X T'y(0,p1,Pp)dpdpado,  tq < iy,

(6.6)
This relates the two-time correlation function to the
simultaneous correlation function through the mean
solution I'y.15 To obtain an equation for T'y({,r,,T,),
let t; = t, =t in (6.6). In this way,it yields an in-
tegral equation for T'y(¢,r,r,):

— ao [t
Toll,r1,1) = Ty(ty,r0)T (g, w) + 27 [0 [ [ 1400
n

— 0,p; — 1Tt — 0,p, — Tp)2 (P,

- pZ)FZ(O’plypZ)dpldpsz. (6.7)
From (3.13) and (5. 2), one observes that the product
(I'yT';),as the kernel in the above integral equation,
is the fundamental solution of the diffusion equation

in 2-»n dimensions:
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(ait-— laa; + ad,) — a2 + &z)g(0)> [Ty, 1))

x —fl(t,rz)] =0, (>0, (6.8

where A, A, are the Laplacians in r, and r,, respec-
tively. Consequently,the integral equation (8.7) is
equivalent to the initial-value problem

-i- To(t,r,,T,) = (@A, + @A,)T,(t,T,,T,)

+ [3(a2 + a2)g(0) +
£> 0,

saag(r; —r,)T,t,r,,1,),
(6.9)

T,(0,r,,1,) = 8(r,)5(r,). (6.10)

When o = k-1 the result (6.9) and (6. 10) agrees with
that of Chernov® and Tatarski? obtained by entirely
different methods. Furthermore,with ¢ = x,(6.6)
generalizes their results for the correlation function
to two different planes. As an example,let the initial
condition be T', ,(0,r,,r,) = h(r; — r,). Then,after
simplification, (6.6) yields

TyalbystaiTy,Ty)
/0505 y) (/8)0sgpt,
=e fR” h{p)e

XTy(ty—ty,p+ 1, —Ty)dp, ty=t,. (6.11)

Since Tylty,tp;T 1,T9) = Ty
that

(L, 21319, T,),it follows

T, alty,ta5Ty, 1))
= /880 (074,552 8,)) fR h(p) /e (p)t,
n

XTy(ty—ty,p+ry—rddp, t;=0t, (6.12)

The results (6.11) and (6.12) are new. For {, =, =,
either one of them reduces to (5.14) as 1o be expected.

For higher moments,the multitime correlation func-
tion can be related to the corresponding lower-order
time correlations,and eventually the simultaneous
correlation function. This reduction is achieved by

a repeated use of formula {6.1) and by breaking up
the range of integration into nonoverlapping time in-
tervals so that the property of independent increments
is applicable. This observation is important in the
context of the parabolic equation approximation be-
cause,in general,one has to deal with one-plane cor-
relation only. Hence the problem is greatly simpli-
fied. The details will not be shown here, Instead the
equation for T, (t,ry,T,,...T,) Will be derived. By
almost the same steps that lead one from (6.2) to
(6.7),the following integral equation results:

m
Fm(t,rl, Toyess ,rm) =jl311‘1']~ (t, I‘J)
4+ 1t (m ) o

N fR“~ m fﬂn ;}k ;0,8 (0 — Py

m
><(ll'=l1 ry,¢t—o,p;— r19r‘m(o,r1,r2, .o
X dpy---dp,do,

.r,)
(6.13)
where the following convention is in effect:

I, foroddj

Tyi= (= . (6.14)
r,, forevenj
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It is not difficult to see that the integral equation
(6.13) is equivalent to the initial-value problem
g

?tr’"(t’rl’rz"" S (ZajA] + 8g O)Z)a + 3
j=1

x%}kajakg (I'_,- - rk)) 1"m(z‘,r1',1'2 rm), (6.15)

m
Fm(O,rl,rz,...,rm):.ﬂl é(rj). (6.18)
=

This equation has not been solved for > 2,

7. ASYMPTOTIC EVALUATION OF FUNCTIONAL
INTEGRALS

The method of stationary phase (or the Laplace

method, in general) has been applied to many pro-

blems in quantum physics (see, e.g.,Ref. 16). It is of

interest to carry out certain computations of this kind

here. Let c(Z,7) be the set of all functwns (7 ) 1n
¢(0,#) withz(¢f) =r. Suppose that G[z]and f ¢z

are two smooth functionals on ¢(z, 1’) S0 that the follow-
ing integral existis:
H
e = [, 6la) exp (8 ! [o0a(r)
= %<z'<r>)2]dr)dwz, (1.1)
where § is a complex parameter and |f|>> 1.

The method consists of finding the extremal paths
z*(7) which render the exponent stationary. One then
evaluates I by approximating ¢{z] by a quadratic
functional about z*, The variational problem for de-
termining z* gives rise to the Euler equation

9?2 4 e(z) =0, (7.2)
dr2
z0)=0, z{)=r. (7.3)

If the above boundary-value problem has a unique
solution z* (multiple solutions are admitted),one has,
for large |8|

It,r,p) ~ exp (B Jo [o(z*(m) — %(z*<r))2]dr)
X €l2™ + V) exp {%ﬁ IASANAS CH)

52
'(az(r )oz(7,) ”*)'Y(Tz)d”d”d"
1 2

— B/ 2y dy(r] A

where y =z — z*,and 62¢/0z(7,)62(7,),a second
order tensor, denotes the second variational deriva~
tive of ¢[z]. Thereby one reduces the integral (7.1)
to a Wiener integral involving a quadratic functional.
The asymptotic expansion for a double Wiener inte-
gral can be carried out in a similar fashion,

(7.4)

To apply formula (7.4) to I'; given by (4.6) with a = 0,
one rewrites it as follows:

2,2
rl(t’r) ZL(LV) exp(- ,;2_86:___ fotfot S{Tl - 72321(71}
- Zz(Tz)ldTlde + Lg_ f(; {é(”')lzd‘r)dwz‘ (7' 5)

Here the result is specialized to problem (b), where
o = tk~1,and S is related to R by the assumption

R(t; — ty,vy — Tp) = k4e2S(t, — 15,1 — 1), (7.6)
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in which ¢ is a small parameter measuring the scale
of random fluctuation of . Two limiting cases will be
considered in the following.

Case (a): |k|>> 1 and ke = 0(1): Physically this
means that the wavelength is short and is of the same
order of magnitude as that of the scale of random
fluctuations in the medium. By comparing (7.5) with
(7.4),one sees that 8 = — ik, ¢= 0,and

2
i) = exp( L5522 [t [tsir,
- Tz,zl(Tl),Zz(Tz)]dTldT2> . (7.7)

The stationary path in this case is given by the free

particle trajectory
zX1) = (1/D)r (7.8)

using a three-term functional Taylor series expansion

of G[y + z*]in y about z* given by (7.7),and noting

(7.8) and (7.4),the asymptotic result for r,is found

1

Fz(tl,tz;rlyrz) ~ d/(tlyrl)—‘p(tzyrz) exP<— k4

1 £t
t—z(o— T)rz} dOdT—folfozSI:G_

b
tl

2¢2 t, (o _
><f0 fo S[o
g __1 k€2 2 1 ts 2

T, tlrl 7, rz} dod7> ;1—1 T Z_) Z—folT(t] -

T B34
ry,— t22r2> [D(1y, 7)) + D(7y, Ty)dTydT, + i 18 : E
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after evaluating the resulting integrals in (7.5)

Fl(tyr) ~ ll/(t,r) exp[.—%fotfoo S(o

T,—tl- (0 — ‘r)r] dodr) 31
34
k e ft fot VS[TI —T
1
*VS [7'3 7472—(73 - T4)r] [D(T]_’T:;)
— D(74,74) — D(7,,73) + D(7,, TPldT - dTy
k€2 1 (bt 0 o, T
——l-—4—2—f07(t T2)V-VS Tytl‘ ar;,
where the function D has the following definition:
(Tl/t)(t - 72),
D(Tl,Tz) =
(Tz/t)(t - Tl),

Similarly the second moment I',, referring to (4.7),
can be expanded and the result is

1
2»7(71 - 7'2)1'

(7.9)

ifry=7,
(7.10)
ifry >,

1 4 [
T, t—l(o— T)I‘lj| dodt +f02](;’s [0._ T1s

TZ)V AVAY <Tl — TZ'
1l

- ftj VS [’rl - Tz:zl‘ {14 — Tz)l‘j] VA [73 —~ Ty,
0 0 '

2
’%(T:; - 74)1‘]-:| [D(T]_; 73) - D(Tl’ 74) - D(Tz,‘73) + D(Tz, 74)]d7'1' . 'd74£ —1 kg€4 Z])l jot]fot] fotjfotk vS |:Tl — g,
i Ji k=

7

1 - T 1
t_j(Tl - 72)1',-] -VS (Tj - Tk,;'“_"—-r - grk> [D(74573) = D(1y, T5)]dTy - - - d7y 'vs[Ts - 74’5("'
J

— D(T1,Tg)— D(1y, T5) + D(1,,7,)]dT,-- -d74€

T T 3.4
73_1.] - tirk> [D(71,73) = D(Ty, Ta)JdT - -dTy + i ke
j 2

T3 Ty

t_1r1 - _t;'rZ [D(Ty,7T3) + D(74,T,)dT - dT,.

The asymptotic expressions for higher moments be-
come too lengthy to be given here.

Case (b): |k|>>1 and ke? = O(I): This is thecase
where the scale of random fluctuations is comparable

to the square root of the wavelength. Setting b = $ke2,

the Euler equation (7.2) corresponding to the mean
solution (7.5) is found to be

i L2 b [fUS[T— 0,2(T) — z(0)}do =

dr? 0

It is easy to show that, for real %,there exists no real
solution which satisfies the boundary condition (7. 3).
This means that there is no stationary path in the
class c(f,7). Hence the asymptotic expansion cannot
be obtained this way. However it is worth mentioning
a recent paper by McLaughlinl7 in which the asymp-
totic evaluation of Feynman integrals for yarious
limiting values of parameters is studied and slightly
complex path is admitted. The results obtained in

(7.12)

=k

3 T4)rj:| [D(74,73)

1
BT 0 o[- ek, = g us(s -
J=k

oS gos(s

T2
T, T VS \Ta T T

(7.11)

o
1 2
tl

this section, with ¢ replaced by x, pertains to the pro-
blem (b),the random scattering by a half-space.

8. HIGH FREQUENCY RADIATION

Let us keep only one term in the asymptotic results
for I'y and T', obtained in the previous section and
specialize them to problem (a) with » = 3. In this
case S is time independent and 2 must be replaced by
3k in (7.9) and (7.11). Then these equations yield,

withr = | r|,

E\3 < ¥2
r,¢,r)~[—]= e th —
1(6) (41rz't>2 P

— k2e2 fotfoo SI} (0 — T)r] dodr) (8.1)

and

r2 _72
;zk——zk—
ty ty

| B|2 >3/2
Tty 55Ty, T )~<——
PRLTRI TR \i6n2t ¢,
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— k2¢2 <ft1f°S[L(o -7 rl] dodr)
-
+f fS[ o——T)rz]dodT—j f <—r1
T
- fr2> dTldTZE .
To obtain the mean solution () and the second mo-
ment {v(r)v(r)) of the radiation field governed by (2.1)

and (2. 2),one has to transform the above result ac-
cording to (2. 8). In this way, it is found that

{v(r)) ~ (ik)‘1f0°°<37’;—t>3/2 exp ik(t + %’—:2)— k2¢2

ffSl: (o0 — T7) :ldodrgd‘r (8.3)
and
|k |2

3/2
ey oty ~ 112 [ ()2 e i
I 1672t ,¢, P
_ . _ tyorlg 1
+ t71r3) — ik(ty + Hylry) — kzezfo fo S[t—l
x (0 — T)rl} dodT +j"2f° s[—tl— (0 — ‘r)rz:]
2
7
x dodT—f f‘zsl:-lr1 7,72 ]dr dT) dt ,dt ,.
(8.4)
Since || is large,the conventional method of station-
ary phase is again applicable here. In the integral

(8.3),the stationary point is 7 = 7. The leading term
in this evaluation yields

(u(r)) ~ G(7) exp( k262f‘37f0°s[(g— T);]dod‘r>, (8.5)

(8.2)

where 7 is the unit vector along r direction and G is
the free space Green's function

G(r) = eikr/4my, (8.6)
Similarly, the correlation field takes the form

(wley)iteg) = Glry)Sr5) exp| = k262 (727 S0 =7
x 7)dod7 + [ [ 7 S((0 — )7 p)dodT

——f f 1"’ -7 1'2)d1' ar, (8.7
In particular, the auto correlation is seen to be
(@) () ~ Gr)G(r). (8.8)

As far as one can tell, the results (8.6)—(8.8) have
not been obtained before. They show cleariy how a
centered-Gaussian field of refractive indices affect
the mean and correlation fields at high frequency.

First one observes that the mean-square intensity
(8.8) remains unchanged by the random fluctuation
about the zero mean. This is a form of energy conser-
vation at high frequency which is shared by the pre-
vious results (5.14) and (7.11) for problem (b). If §

is isotropic and monotonically descreasing,the mean
field (8.5) attenuates and the correlation field (8.7)
falls off to zero as the separation | r; — r, | tends to
infinity. The higher moments can also be evaluated if
it is so desired.
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9. NONLINEAR MOMENT EQUATIONS

It is well known that, for stochastic equations like
(3.1),the derivation of moment equations leads to an
hierarchy of coupled moment equations., This fact is
reflected in the difficulty of evaluating the functional
integrals in general. To get a set of closed equations
for moments, known as the closure problem in turbu-
lence,1® one must make certain statistical hypothesis
about the solution. In view of the integral representa-
tion of solution, it is natural to replace the statistical
hypothesis by an approximation of the integrand in-
volved. One of such approximations to be presented
here leads to Kraichnan's19 direct interaction equa-
tion which was derived by quite involved physical
arguments.

To fix the idea,one considers the mean solution
I',(t,r) given by (4.6) with = 0. By virtue of (6.1),
it can be rewritten as

I"l(t,r) =y(t,r) + gz—f"‘E [st[T — s,z(7) — z(s)]dT
X eXp( JSPRGT = T,y
- Z(Tz))dTldT2> 8[z(t) ~ r]] ds. (9.1)

For convenience,one introduces a function Q(¢,r) de-
fined by

2 S
Qt,r) =% ['E, [ NG
2 s s
X exp<——o§3 fo fo R(ty — T, 2{(Tq)

T) — z(s)|dT

- z(‘rz))d‘rld72> o[z (2) — r]]ds, (9.2)

which is, so to speak,the first order remainder. In
terms of @, Eq.(9.1) becomes

Y(t,1) + Q1)

By manipulating the integrand of @ similar to steps
taken in Sec.6,there results

Q(tr)—4fffj I,Ut~—sr
XEz[exp( ff R(1, ~ Ty, (1)

- Z(Tz»dﬁd"z) Hz(s) — pJel=() ~ ]
(9.4)

I,(t,r) = (9.3)

- pg)

% dsdtdp,dps.

Now let the following closure hypothesis be proposed:
Approximate the exponent in the right-hand side of
(9.4) according to

Jg by ROy =y atr ) —strharar, ~( [ 7+ J)

R(7, — Ty,2(7y) — 2(79))dT dT5.  (9.5)

This approximation will be called the direct integral
decomposition. Using (9.5) in (9.4),one obtains an
approximation Q4 to @ which can be simplified to give

NN Jo Jo Wit =57 = p1)

X R(s— 'r,pl

Q,(,r) =

pz)I‘l(s —T,p
x Ty (7, py)dsdTdp,dp,.

Py — Pg)
(9.6)
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In obtaining the above expression,one used the Mar-
kovian property of the Wiener path in simplifying the
expectation of the product of two functionals defined
over two nonoverlapping time intervals and Eq.(4.6).
When @, given by (9.6) is used in place of @ in (9.3),
it yields an integral equation for T';. The integral
equation thus obtained is equlvalent to the nonlinear
integro-differential equation

or,(t,r) 2 .
—;t—-— —% AT, (¢, 1) = %—f(; jRn R(t — s,vr — p)
x Fl(t - 5T — P)Fl(S, P)dePa (9.7)
T,(0,1) = 6(r). (9.8)

For o = % in (9.7) and R being independent of ¢, it be-
comes identical with Kraichnan's1? equation derived
by stochastic model equations and using the diagram
method. In this derivation,the assumptions on homo-
geneity and stationarity can be removed. Let the
error involved in this approximation be denoted by
AQ,. That is

A Ql =Q— Ql-
Let AQ,f be the error involved when the initial func-

tion f is smooth. Then one can show,by the definition
of a fundamental solution, that

8Qyf =% [HIE S Wt - s —a(s)]
X R[s — 7,z(s) — z(7) — p]f(p)dp

2
X exp [% <f07f07 +fTszS> R(T{ — Tg,2(T,)

— z(‘rz))d'rld'rzj| [exp <%2—f07 f: R(T,—Ty,2(T})

- z(rz))drldrz) - 1} f dsdr, 9.9)

(9.8"

when o is complex, abound on the error wouldbe diffi-
cult. This is so because the integral E, with the par-
ameter o is not of bounded variation. For real o, this
is,however,possible. Since this case has no direct
physical interest,the result will not be given. For
complex a,one will proceed heuristically. It is obser-
ved that when R(f,r) is delta-correlated in ¢,the error
(9.9) is zero. Therefore Eq.(9.6) should provide a
good approximation when the correlation function R is
peaked at ¢ = 0 (or the correlation time is small) even
if |« |is moderate. For small |« |,one can expand the
exponential function, contained in the last factor in the
right-hand side of (9.9),into a power series in a2.
Thus one finds the error AQ,f = 0(a4) for fixed .
This can be made more precise by using a mean-
value theorem on this last factor as a function of s
and 7 over [0,¢]. From these considerations,one con-
cludes that Eq.(9.6) is valid either when the correla-
tion time is short or when the scale of random fluctu-
ation is small. In the latter case Eq.(9.6) is correct
up to O(a?2) inclusive. The corresponding equation

for the second moment Fz(t,rl, rz) can be derived by
making the same closure hypothesis. Without going
through the derivation, this equation is found to be

0 -
a—t—r‘z(t, ry,Ty) — (@A 1+ @A ,)T,(t,Tq,T,)

=§f0tfﬂnfRn[azR(t——s,r1—p1)
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+ a2R(t — s,Ty — py)+ aaR(t— 5,1y~ p,)
+ aoR(t — s,r, — P T ,(t — 5,11 — Po)
x Tyt — s,ry — py)dsdp,dp,, (9.10)
r,(0,ry,r,) = 6(ry)8(r,). (9.11)

Equation (9.10) was not given in Ref.19. These non-
linear equations should be useful when the random
fluctuations are not small or when the correlation
time is long. In these cases,the perturbation methods,
to be discussed in the next section,break down. It is
worth noting that, for the first time the derivation of
the nonlinear moment equations has been made pre-
cise and the error involved in this approximation is
displayed explicitly.

10. CONNECTION WITH SOME PERTURBATION
METHODS

In this section,one will systematically review and
compare various perturbation methods applicable to
Eq.(3.1) with u= en;

au [
a2

uw(0,r) = 6(r).

The small parameter in the perturbation expansion is
€. As before (n) is taken to be zero. The perturbation
and other methods to be considered here are the meth-
od of Born expansion (MBE), the method of smooth
perturbation (MSP), the two-time method (MTT), the
method of Markov approximation4 (MMA) given in
Sec.5,and the method of direct integral decomposition
(MDID) proposed in the previous section. This pro-
gram will be carried out from the view point of ap-
proximating the functional integral representation of
the solution #. The scope is limited to the mean so-
lution I";({,r) up to O(e2) inclusive.

A+ en(t,r,w)lu, ¢>0, (10.1)

(10.2)

As was shown in Sec.9,the closure hypothesis based
on the MDID lead to a nonlinear equation (9.7). In this
closure hypothesis, if one further discards the integ-
ral from 7 to s,i.e., setting in (9. 2),

JoJSRITy = Toa(T) =
~ [ )R ) — z(T,
a second approximation @, to @ is obtained:
Q=5 1] o wie py)
XS{t—1T,py— pz)Ez l:exp (ez—%—foﬂfoﬂ

(1, — To,2(

z(7,)]d7,dT,

Ty — To,2(T4 )jdr,dr,, (10.3)

T.)— z(rz))d71d72>

x 8[z(7) — z(7") — py + pyJo[z(7") — Pz]]
X drdr'dp dp, = €2 f S fRn fRn
wit— 1,
XY(1y—

—p)S(T, — To,p1 — Py)

— )14 (75,p5) dT,dT,dp,dp2,
(10.4)

T2s Py
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where S is defined to be
S(t—t',r—r')y=Mmt,rne,r'y, (10.5)

when @,,given by (10.4),is used in (9. 3),an integral
equation for I', is obtained

a2 re ’
N R INATAN
d/(t— ler"’Pl)S(T Tzapl_Pz)
X ‘I/(T — TP —Po) T4 (7T zapz)dT dTedpdp,.

(10.6)

This integral equation is obviously equivalent to the
problem

or, (¢, 1) 2
—;—t—— %Arl(t,r) = €2 %fotfR vt — 1,vr— p)
X S(t—7,r—p)T'y(7,p)dTdp, (10.7)
r,(0,r) = s(r). (10.8)

The integro-differential equation (10, 7) can be derived
by applying the method of smooth perturbation due to
Keller! and others. In view of closure hypothesis

(10. 3), this approximation is less accurate than that
of MDID. In fact,a comparison of (10.7) and (9.6) re~
veals that the former is a linearized version of the
latter. The expression for the error involved, similar
to (9.9) can be written down. It is found that the error
is again zero with S is delta-correlated in time. Al-
though Eq.(10.7) is derivable from (10.1) by MSP
based on weak fluctuations, it is valid for strong fluc-
tuation when the correlation time is small. For large
correlation time and fixed #,the error is of O(a%e4).

Let us consider the next level of approximation. In
(10.4), it is assumed that T, is representable in terms
of slowly varying function w(e2¢,r) so that

(g, 1) = f V(t,r — p)w(e?t, p)dp. (10.9)
The above representatmn is merely a formal approxi-
mation based on the intuitive idea that a small pertur-
bation introduces a slow modulation of the solution.
On using (10.9) in (10, 7) and integrating the resulting
equation from 0 to ¢,one finds,after simplification,
that

M:%—lff fRnfRnfRnd/(—Tl,r—Pl)

oT r
X Y(1y) — TosPy — pz)S(T — TosPy — 2)
X Y(Ty,py — p3lw(T, p3)dT dTydp dpydp,
(10.10)

in which 7 = €2, Let
Ty
¢(T1,p, 1‘) =f0 fRn fRn ‘P('— T,r — pl)

Pz) W(Tgy P — P3)
(10,.11)

X Y(Ty = TgyPy—
x w(T,p)dT,dp,dp,.
Then,as ¢ — «© with 7 fixed, Eq. (10. 10) has the follow-
ing limiting form
dw(7,r) _ aTtl n tf f ¢(T,p, Yw (T, p)dTdp.

o7 (10.12)
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This equation is shown in Appendix 2 to agree with
that obtained by a two-time method.3 However, the
approach given there is a variant of what is proposed
in Ref,3. It is seen that the two-time method can be
taken to be an approximation to the method of smooth
perturbation under the assumption (10.9) and by tak-
ing time-average.

If the correlation function R = €2S is taken to be
delta-correlated as shown by (5.1),then it is easy

to show, invoking (10, 10), that Ty given by (10.9) satis-
fies the equation

or, (t,r)
—;t :%(A + %g(o)) Fl(t,r)-

This equation was first derived by Chernov® by Mar-
kov approximation which is known? to be equivalent
to assuming the correlation R being delta-correlated
in £.

(10.13)

Finally, replacing R by €2S in (9.1)and expanding the
exponential function in powers of €2,the one-term
expansion yields

=yY(t,r) + €2 %zfotfoTlEz{S[Tl -
- Z(Tg)]a[z(t)

Fl(tsr) T2,Z(T1)

— rltdr,dr, + O(e%at). (10.14)
The expectation in the above integral, depending only
on three points 7,,7,,and { can be easily computed.
With this result, (10. 14) becomes

Ty(t,r) = Y(t,1) + €2 “Tzf;foflf}zn fRn
Y(E— 7, = p)S(1y — T2,P1 — Pyp)
XY(Ty — Tg, Py — Pg) W(To,pa)dT,14T4dp,dp,
+ O(edad), (10. 15)

Alternatively, if one expands « into a power series in
€,the successive approximations for u can be deter-
mined from (10.1), The mean solution is found by
taking average termwise in the perturbation series.
The result I'; thus obtained coincides with (10, 15).
This procedure,known as Born approximation, suffers
a serious defect,namely the secular behavior of the
solution (for a good discussion, see Ref.5). This
limits the validity of the approximation to a small
time range. Various modified perturbation methods,
such as MSP and MTT,have been designed to circum-
vent this difficulty.

To compare various perturbation methods it seems
reasonable to degree to the following convention:
Approximation A is said to be more accurate than
approximation B if B is obtainable from A by further
approximations which lead to a simplification in finding
the solution, and the poorest approximation of all is
the one which is not uniformly valid. Then clearly
one has the following implication:

MDID - MSP - MTT - MMA —» MBE, (10.16)
where the arrow points in the direction of decrease in
accuracy. In passing it is cautioned that the two-time
method is not applicable if the random field p (or 7)
is time independent. A formal argument can be found
in the Appendix, Sec. 2.
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11. CONCLUDING REMARKS

By means of Wiener integrals,two problems arising
from wave propagation in random media have been
investigated. Certain concrete results are obtained by
this approach,notably the results contained in Secs.
5-8. The connection between function space integrals
and differential equations may serve to facilitate the
actual means of evaluating the integrals as well as to
clarify the nature of various approximations. The re-
sults presented here are far from complete due to the
well-known difficulty in the evaluation of functional
integrals, This approach will bear more fruits when
the functional integral calculus are advanced and
better methods of approximate evaluation become
available, In Ref. 20 Daletskii gave a representation
for the solution of certain hyperbolic system in terms
of a continuous integral (or functional integral). Though
concrete results may not be obtainable, the part on the
derivation of moment equations can presumely be
carried over. Finally one remarks that the results
given in this paper can be interpreted in the context
of a quantum mechanical problem, the motion of a
particle in a force field or random potential.
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APPENDIX

1. The Limit of a Functional Integral

Consider the limit,as @, = Re{a} — 0, of the integral
I, defined by (5.11). To show this limit is given by
(5.13),0ne rescales p, according to

p(7) = (204)"V2p,(7). (A1)
Then p(7) is a Wiener process with the covariance
matrix

<P] (71)Pk(72)> = min{Tp Tz}oi]’ ’ (A2)

upon using (Al) in (5.11), it yields
I,(t,xyry,y) =E, [Eaxp (% a&fotg(\/2alp(T) — V20,
Xp(t)—ry + r2)d7> k(ry —r,— VZalp(t))] . (A3)

Let it be supposed that the functions g and % are bound-
ed and continuous on R,. Then the functional inside

the expectation sign in (A3) is bounded and continuous
and hence is Wiener p integrable for each o, > 0. In-
voking the dominated convergence theorem in mea-
sure theory,one has the desired result as asserted
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Elr.?o I,(t,r4ry, 0p) Zéil% E,
X [exp (ia&fég(«lZalp(‘r)—\/Zalp(t)—r1+ rz)d-r>
X h(r, — r, — V24, p(t))]

=E, [exp(i a0, f; g(ry, — rl)d'r)h(r1 — rz):l

= h(r, — ry) exp(3a,0,8 (T5 — 1)t]. (Ad)
2. A Derivation of a Mean Equation by the Two-Time
Method

To apply the MTT, one deals with Eq. (10.1) directly.
Surpressing the dependence of u on r,one seeks a
solution of the form (see Ref. 3)

u(t, €) = v{t, 7, €), (A5)

where T = €2f and v is a function depending on two
times ¢ and 7. Here v is different from that defined
in Sec.2. Then one has the following differentiation
rule

%_—@_ +€2i’0_

a ot ar
Using (A5) and (A6) in (10.1) and (10.2) and expanding
v into a power series in ¢,

(A6)

‘U(.t,T,G) = ’I)O(t,T) + €Ul(t’T) + GZUZ(t’T) toeee, (A7)

The resulting equation gives rise to the following re-
cursive system

ov
0 ¢
—5;— e p) AUO = 0, (A8)
1)0(0, O) = 6(1‘),
dv,
—67— -3 Av, = 5101, (A9)
v,(0,0) = 0,
and
e T a dvg
_at-_Tsz :‘-5—7)1}1 - _87’ (A].O)
v,(0,0) = 0,
The solution to (A8) is found to be
vyt T) =fR Y(t,r — p)(r,p)dp, (A11)
n

where @ is a slowly varying random function to be
determined,and it satisfies the initial condition

w(0,r) = &6(r). (A12)

By substituting (A11) into (A9), Eqs.(A9) is then solv-
ed to give

vy {t, 7) 2%‘ ;Le,, fRn Yt — s,r— Pl)lI/(S,Pl - p3)

Xn(s,pl)ﬁ)(T,pz)dsdpldpz. (A13)

When (A11) and (A13) are used in (A10),its solution
reads
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a2 ¢ :

vy(t,T) ZTfofosfnnfaann"’(t—tl’r'pl)
XYty — gy Py — Pz) W(tz,Pz - Ps)[ﬂ(tl,Pl)
X n(tz,pz)]ﬁ}(T,pa)dtldtzdpldpzdp3

9 ~
-t t,r — p)w(r,p)dp. Al4

—— Jp wlt,x—p)i(7,pldp (A14)
It is seen that the second term on the right-hand side
of (A14) grows linearly with . For the mean solution
to be bounded in /,one requires that

N |
tlgg) —t—<vz) =0. (A15)

In view of (Alg),condition (A15) gives rise to an equa~
tion for w = (w)

1
g o Jot Sy, f, Je, WO tor =)

n n n

dw(r,r) _ a2

oT -

PAO-LIU CHOW

X Yt — ty,p1— P)S(ty — ta,P1 — PR)W(tg, Pa — P3)

X w(T,ps)dt dt ydp,dp,adp,. (A16)
The initial condition (A12) yields
w(0,r) = 8(r). (A1)

Here one tacitly made use of the almost sure stability
theorem in probability [see Eq.(4.2) in Ref. 3], be-
fore the expectation is taken. This permits the re-
placement of the time-average of a random function
by the time-average of its mean function. It is be-
cause of this that Eq.(A16) is no longer valid when
the random field 5 is time independent. Therefore
the two-time method is not applicable to this case.
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The compatibility of mechanistic, microscopic dynamics with dissipative, macroscopic behavior is proved by
solving rigorously a model. This model consists of an infinite chain of two-level atoms interacting with an elec-
tromagnetic mode via two-photon emission and absorption.

INTRODUCTION

The finite lifetimes of unstable particles, and the re-
laxation times of nonequilibrium thermodynamics

are usually treated by approximate methods which
tacitly assume that these dissipative behaviors are
somehow compatible with the conservative laws of
mechanics. To prove that this assumption is correct
is still an open problem in both scattering theory and
nonequilibrium statistical mechanics. Two projection
techniques have been used in attempts to solve this
problem in a manner which would be both mathemati-
cally rigorous and physically satisfying. In Sec. 1, we
sketch these two approaches and indicate their res-
pective pitfalls. The main body of the paper then
treats explicitly an example in which the pitfalls of
these projection techniques are avoided. Specifically,
we present a quantum mechanistic model which ad-
mits a set M, of macroscopic observables leading to
a dissipative, selfconlained macroscopic description
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of the evolution. We first describe in Sec. 2 a simpli-
fied version of the microscopic, mechanistic model.
The set M, of the observables of interest and the
dissipative character of the evolution relative to M,
are discussed in Sec. 3. The full model is presented
in Sec.4, Some mathematical proofs are collected in
the appendices. The general significance of the re-
sults is indicated in Sec. 5.

1. PROJECTION TECHNIQUES

The first ‘evidence we have that a “macroscopic” dis-
sipative description of the evolution is in principle
compatible with a finer, or “microscopic,” mechanis-
tic description is based on the following embedding
theorem due to Sz-Nagy.l Let {S¢/¢ € R*} be a con-
tinuous, contraction semigroup acting in a Hilbert
space 3, then there exists a unique (up to isomor-
phisms) triple {3¢, U?, D} constituted by a Hilbert
space J¢, a continuous unitary group {U*|¢ € R} on 3¢,
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INTRODUCTION

The finite lifetimes of unstable particles, and the re-
laxation times of nonequilibrium thermodynamics

are usually treated by approximate methods which
tacitly assume that these dissipative behaviors are
somehow compatible with the conservative laws of
mechanics. To prove that this assumption is correct
is still an open problem in both scattering theory and
nonequilibrium statistical mechanics. Two projection
techniques have been used in attempts to solve this
problem in a manner which would be both mathemati-
cally rigorous and physically satisfying. In Sec. 1, we
sketch these two approaches and indicate their res-
pective pitfalls. The main body of the paper then
treats explicitly an example in which the pitfalls of
these projection techniques are avoided. Specifically,
we present a quantum mechanistic model which ad-
mits a set M, of macroscopic observables leading to
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of the evolution. We first describe in Sec. 2 a simpli-
fied version of the microscopic, mechanistic model.
The set M, of the observables of interest and the
dissipative character of the evolution relative to M,
are discussed in Sec. 3. The full model is presented
in Sec.4, Some mathematical proofs are collected in
the appendices. The general significance of the re-
sults is indicated in Sec. 5.

1. PROJECTION TECHNIQUES

The first ‘evidence we have that a “macroscopic” dis-
sipative description of the evolution is in principle
compatible with a finer, or “microscopic,” mechanis-
tic description is based on the following embedding
theorem due to Sz-Nagy.l Let {S¢/¢ € R*} be a con-
tinuous, contraction semigroup acting in a Hilbert
space 3, then there exists a unique (up to isomor-
phisms) triple {3¢, U?, D} constituted by a Hilbert
space J¢, a continuous unitary group {U*|¢ € R} on 3¢,
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and a projector D from I onto 3, such that 8¢ =
DU!Dfor all t inR*,and {U*¥ |t € R, ¥ € K} is
dense in X. Several papers2~—4 have recently dis-
cussed the idea that this theorem could provide a
conservative, rigorously mechanistic explanation for
the dissipalive, exponential decay of unstable par-
ticles. It would seem natural to consider® the same
idea in nonequilibrium statistical mechanics. The
physical interpretation of the mathematical construc-
tion involved in Sz-Nagy's theorem presents, however,
even more than in the case of unstable particles,
some rather serious difficulties,among which is the
physical identification of the observables and states
of the microscopic description obtained in this man-
ner,

A line of less resistance thus appears to be the study
of the inverse problem where one supposes known
the microscopic description and asks whether a dis-
sipative macroscopic evolution does exist. This prob-
lem can be decomposed in three steps: First, identify
the set M of the microscopic observables, the micro-
scopic equations of motion and the set M of macro-
scopic observables; second, obtain a reduced macro-
scopic description, e.g., in the form of a generalized
master equation (GME); third, investigate whether this
description is dissipative, i.e., determine under which
conditions the GME reduces to a Pauli master equa-
tion (PME). A model5:6 has been proposed, showing
that steps (1) and (2) can indeed be carried out, thus
setting on a rigorous footing a well defined projection
technique in Liouville space. In this model, % is the
von Neumann algebra ®(3C) of all bounded operators
acting in some Hilbert space X;the time evolution is
given, in the Schrodinger picture, by the von Neumann
equation

%p‘ = —{Lpt with L- = [H,"], 10
and H is the microscopic Hamiltonian; the Liouville
operator L is shown to act as a self-adjoint operator
on the Hilbert space £{3C) of all Hilbert—Schmidt
operators on . This space, called “Liouville space,”
contains as vectors the density matrices p. M is
taken to be the Abelian von Neumann algebra gene-
rated by the “macrocells” E, (i.e.,{E, | is a partition
of & into mutually orthogonal subspaces which are
assumed to be of finite dimension N,). For every
macroscopic observable A =2, A(A)E , in M we thus
have

(pt; A) = 25, pHA)A(A) @
and the GME

¢
‘;it pt(A) = "'Z;A’fo dSKs(A, A’)
1 ol At 1 _
X Ny prs(a’) — N, pts(a)!  (3)

is then derived without further approximation from
the von Neumann equation (1) and the initial condition
p0 = DpO, where the coarse-graining operator D is
defined as a projector on £(X) by

Dp =23,p(A)p, with

(4)
p(a) = TrpE, and p, = E, /N,.

Step (3) would then consist in showing that Eq. (3)
reduces to
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d

L pia) = — Dyk(a, o) ) -

Ny pia’) — N, pia)l . (5)

It has been proved,? however, and this is the pitfall
associated with this projection technique, that this
last step is notf possible, i.e., that (5) is incompatible
with (1) for the model as presented up to this point.
Gudder and Marchand® have proved that D, as defined
by (4), could not be generalized and still keep those
of its properties which are essential to its interpre-
tation and which have been used in the derivation of

(3).

Various procedures have been proposed to bypass the
incompatibility of (5) and (1). All involve some kind
of argument to the effect that (5) should be understood
to hold only after times large compared to some in-
trinsic microscopic time, e.g., “collision time.” It

has been suggested? in particular that the incompat-
ibility of (5) and (1) can be removed by the introduc-
tion of a time-smoothing operation on M, accompanied
by the corresponding smoothing of the initial condi-
tions. This idea of replacing M by a “smoother” set
M, of observables which would behave in a truly dis-
sipative manner has been strongly advocated by Prigo-
gine and his school, and it plays a central role in their
recent publications.? Taking this idea seriously into
account, we come to suspect the discreteness of the
spectrum of 9 to be the stumbling block which barred
(5) from receiving a mechanistic interpretation. The
purpose of this paper is to show that this is indeed
the case. We produce a mechanistic model which ad-
mits a set 9320 of macroscopic observables such that
(i) the time evolution with respect to ¢, can be des-
cribed in a self contained manner, (ii) it is dissipa-
tive, and (iii) M, has continuous spectrum.

2. THE SIMPLIFIED MICROSCOPIC EVOLUTION

We take for the algebra of microscopic observables
the von Neumann algebra ®(3C) of all bounded opera-
tors on the Hilbert space ¥ = £2(R) of all square
integrable functions with respect to Lebesgue mea-
sure:

N = B(L2(R, dx)). (6)

We define the time evolution by its action on the vec-
tors of £2(R) as follows:

(UH)(x) = e t/2¥ (e tx). (M

Clearly {Ut|¢ € R} is a continuous, one-parameter
group of unitary operators acting on £2(R). Its gene-
rator, our microscopic Hamiltonian,is equal to

H=3(PQ + QP) (8)

on the dense linear manifold $(R) in £L2(R), constituted
by all infinitely differentiable functions ¥ from R to
C for which

lim x"'ﬂ(x):oforalln,m:0,1,2,---. (9)
|xl=00 dx?»
P and Q are defined on $(R) as usual by
. d¥
(P¥)x) = —i 7= (x), Q¥)(x) = x ¥(x). (10)

Since $(R) is stable under P and Q, and since P,Q
and H (see Appendix A) are essentially self-adjoint
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on $(R), the formulas (8) and (10) suffice to define the
self-adjoint operators P,Q and H.

We notice that the Fourier transform F defined by
)1/2 [ dy explixy)¥(y) (11)

acts as a l{ime-veversal operator, i.e.,

(F¥)(x) = (211

FU'F* =U-tfor all t in R. (12)
Since F is unitary, we conclude that

FHF* =—H (13)
in agreement with (8) and the well-known equalities

FQF* = P,FPF*=—-Q. (14)

The effect (13) of the canonical transformation F on H
shows that the spectrum of H is symmetric with res-
pect to 0. A more detailed analysis of (7) or (8) would
actually show that the spectrum of H extends from

— o to +©, and is continuous with respect to Lebesgue
measure. The physical meaning of the last but one
property will be discussed in Sec. 4.

To every density matrix p, i.e., to every normal state
on N = B(£2(R)), corresponds a positive Hilbert-
Schmidt kernel, i.e., an element p in £2(R2) such that

(p¥)x) = [ dyp(x,y)¥(y) for all ¥ in £2(R),
ff dxdy lplx,y)i2 < o, (15)
f dxp(x,x) =1.

The time evolution, in the Schrodinger picture (see
Sec. 1), takes then the form p(x,y) - pi(x,y) with

pilx,y) = etpleix, ety) (16)
and {U!|¢ ¢ R} defined on £2(R2) by
(UR)x,y) = e 'R(e"tx, e ty) (17)

is clearly a continuous, one parameter group of uni-
tary operators. Its generator [see von Neumann Eq.
(1) in Sec.1] is equal to

L=3{PQ, +QP,) +(P,Q,+Q,P )} (18)

The precise definition of P_,Q,_, P ,Q.,and L, and
the associated domain questions are d1sposed of as in
the beginning of this section [see the remark follow-
ing (10), with now S$(R) replaced by S{R?)].

3. REDUCED DESCRIPTION

We now consider the set £°(R) of all measurable,
essentially bounded functions f: R = C with respect
to the Lebesgue measure. This set is equipped with
the structure of a normed*-algebra by the following
definitions:

WSf)x) = Af &),

(f +8)x) = flx) + glx),
(fe)x) = f ) gk), (19)
) = fx)*,
Il = ess—sup | f )1,
X€E R

J. Math. Phys,, Vol. 13, No. 8, August 1972

G. G. EMCH AND J. C. WOLFE

for every /& € £°(R) and every » € C. For every f
in £°(R) we then define the bounded operator Agact-
ing on £2(R) by

(A,)6) = Flx) W), (20)

We now consider as the set M, of all “observables
of interest” (see Sec. 1) the set

M, = {4,1f € L¥(R)} (21)

and noticel? that f - A_.is an isometric isomorphism
from the normed*-algebra £°(R) to Ik, considered
as a normed*-subalgebra of ®(£L2(R)); further more
2)320 is a maximal abelian von Neumann subalgebra of
®(L2(R)) and has continuous spectrum, namely R. The
physical interpretation of 3, is provided by the re-
mark that 9, is generated, as a von Neumann algebra
by the projectors E, defined by

where A runs over all Borel subsets of R, and X, is
the characteristic function of A, Hence %, is the
maximal Abelian von Neumann algebra to which the
position operator Q is affilated. We remark in pass-
ing that M maximal abelian means in physical terms
that the self adjoint elements of M, form a complete
set of commuting observables; this fact is responsible
for some simplifications in the forthcoming argument,
but is not essential to its completion. Clearly the
restrictions to 9330 of any normal state p on N is a
normal state on 9k,. Consequentlyl! for every p nor-
mal on %, there exists one positive element p in £L1(R)
such that

(p;A) = fA(x (x)dx for all A in £2(R) (23)
and, in particular,
fptx)ax = 1. (24)

We thus have identified the macroscopic states cor-
responding to the normal states on %, Moreover,
every normal state p on 3, can be writtenl2 as

(p;4) =

for some ¥ in £2(R) with fl\I/ (x)|2dx =1. Conversely
every such ¥ generates a normal state p on M, and
upon extending (25) to every A in i, ¥ actually gene-
rates a normal state p on %, the restriction of which
to 9, is evidently p. We notice that for every such ¥
and every unitary operator U in Iy = My, ¥ = UV¥
also generates a normal state p’ = p on R, with, how-
ever,p’ equivalentl3 to p with respect to I,. Hence
any normal macroscopic state contains infinitely
many linearly independent normal microscopic states.
We remark also that p is the so-called “diagonal
part”? of p; indeed the bridge with Prigogine's nota-
tion is provided by the remark that

(¥,AV) (25)

plx) = R ,(x) with

(26)
R (&)= p(& —n,& +n).

In the perspective of Sec. 1, M, presents its first re-

markable feature with respect to the microscopic

time-evolution generated by (7). Indeed the automor-

phisms a! of % defined for every ¢ € R by
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at[A] = U-tAU? (27
map M, into itself, and actually the restriction of each
atto M, is an automorphism of 3, itself: For each
A in M, we have

(@A) (x) = Alew). (28)
This implies immediately the existence of a self-
contained macroscopic description of the time evolu-
tion with respect to M,:

pix) = etplex). (29)
The privileged role of M, with respect to the time
evolution is emphasized by the change of variables
(26). Indeed, for any normal state p on % we have

RI(€) = e 'R _, (ett) (30)

n e 1

so that the nondiagonal part R;,O depends, in the
course of time, on R£70 for all values n’ = e”'n, where-
as the diagonal part R} satisfy Eq.(29), which involves
R0 only.

The second remarkable feature of M, is that the re-
duced description (29) of the time evolution satisfies
the “master equation”:
d ~
a®
with L defined, for instance on $(R) C £1(R)

z:_if“‘,'t

by L =Q —iA, where

31
Q =4H{PQ +QP)and A = 11. (81)
Q gives the usual propagation term, whereas the
strictly positive operator A gives the dissipative part
usually associated with a master equation of Pauli
type.

Equations (29) and (31) show that the time evolution
prescribed by (7) and (16), reduced to M, provides a
model for the kind of dissipative behavior looked for
in Sec.1. The dissipative character of the evolution,
as viewed from 2, can be emphasized by the follow-
ing three side remarks. First,the macroscopic en-
tropy defined naively by

8(t) = — [ dxptx) Inptx) (32)
is a strictly increasing function of time. Second, $(R)
is stable with respect to {Ut|t ¢ R} as defined by (7),
and the equation

alQ)=UtQUt =¢e!Q (33)
thus make sense on this dense linear manifold $(R) of
£2(R) on which Q and hence a{[Q] are essentially self
adjoint. The obviously dissipative behavior of the
operator Q (which is affilated to ), as given by (33),
can also be seen from the time behavior of the boun-
ded operators E , defined by (22):

(E Y =E ,, where
s A (34)
At ={etx|x e a}.

In particular, and this is our third remark, the par-
tition
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y ={E, A =[n,n + 1],n ¢ &}, (35)

of the identity I on £2(R) into orthogonal subspaces
satisfies (for 7 = 1n2)

0c--caTy]Jcycary]c---ci,
with
A antfy] =0,
nez ] R (36)
v, e =1,

a property reminiscent of the behavior of K-sys-
tems.14

4. PHYSICAL MODEL

The microscopic time evolution (7) of the simplified
model considered in the preceding sections is gene-
rated by a Hamiltonian (8), the spectrum of which ex-
tends from — to +, and hence is unbounded from
below, as well as from above. From a physical point
of view, this is so unacceptable a behavior for a sys-
tem with a finite number of degrees of freedom (here
1) that one sometimes hears4 such Hamiltonians re-
ferred to as “unphysical.” Incidentally, this “trouble”
has been diagnosed3 in the approach via Sz-Nagy's
theorem. It should however be pointed out that for
systems with an infinite number of degrees of free-
dom this behavior is the rulel5 rather than the excep-
tion. We shall now indicate how our simplified model
can be interpreted in this context.

We consider an infinite chain Z of identical spin-half
particles (i.e., “two level atoms”) interacting with an
electromagnetic mode of frequency w. This problem
is formulated in the manner usual in statistical
mechanics by first prescribing the Hamiltonian rela-
tive to a finite region £ in Z, and then taking the limit
of the corresponding time evolution as  tends to Z.
We thus define:

HQ) = HO(Q) +AV(Q), (37
with
HyQ) =w(a*a + ;) +B Z} o? (38)
and jen
V() =—-N@)1 2, (03 aa + aga*a*). (39)
jen

This type of interaction is well known in quantum
optics.16

The heuristic argument of the standard mean free
field method used in the theory of phase transitions
can be used here, but this should be done with some
care. The mathematical problems connected with
this aspect of our model are analyzed, and solved in
detail in Appendices A, B, and C. The result is the
following.

When the initial state of the system is prepared in
such a manner that the EM mode is uncoupled to the spin
system, and that the latter is in the canonical equili-
brium corresponding, for the natural temperature 3,
to the Hamiltonian —Bz.cyy, the time evolution corres-
ponding to the thermodynamical limit of (37) is given,
for any observable A, relative to the electromag-
netic mode, by

(W5 Apwt = (v o lopuls @hy[Apu) (40)

where py )y is the initial normal state of the EM mode,
and
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Vi olPeul = Ul 0Peuli’s »
abylApy] = Ugh4enlty
with {U§ ,1¢ € R} and {UL, |t € R} defined explicitly

in Appendix C. The physical interpretation of this
result can be given as follows.

(41)

The generator Hyy of {U4y !¢ € R} is the free Hamil-
tonian of the EM mode, the fundamental frequency of
which corresponds to the resonant situation where a
transition from 0% = + 1 to 02 = — 1 is accompanied
by the emission of two photons of frequency w, = B.
This part of the evolution is thus trivial: Its contribu-
tion is a periodic motion of frequency w .

The generator Wy of {U}, 4/ € R} is more compli-
cated as it describes the occurence of a dissipative
behavior. We now substantiate this assertion. We
can rewrite (C10) in the form

Wy = [(w —wg)/wg]Hgy + A0W, (42)
with

Hgy = 2(P2 + w2Q2?), (43)

W = 3(PQ + QP). (44)

We use the substitution

Q= (2uwoyia* +a), P=ilwy)ia* —a). (45)
For the resonnant frequency w, = B, W, reduces
then, up to the multiplicative constant A¢, to the Hamil-
tonian (7) of our simplified model, the dissipative be-
havior of which we already discussed. We still might
add here that for any initial state pg, of the form

(PewiApy) = 7?0 Pr(¥,sApy'T,)

with (46)
*
aa¥l, =n¥,,
our Eq.(40) leads to
(Peys Hey)! = (pgys Hey) cosh2rot, (47)
<PEM; Qt=0= <PEM; P)t, (48)

(ppws Q2 = {pgys Q2) {exp(2r0t) cos2w yt

+ exp(—2xot) sinZw it} (49)
(pgws P2)t = {pgy; P2) {exp(—2r0t) cosZw ot

+ exp(2rot) sin2w yt}. (50)

We conclude from (47) that the spin system releases
its energy to the EM mode in such a manner that the
expectation value of the (unperturbed) energy Hgy
stored in this mode increases monotonically with ||,
and actually one has for large |¢]

(Pews Hew! ™ 2 {ppw Heyw €xp(2r0lt]). (51)

Moreover, (48) implies that (49) and (50) give the evo-
lution of the covariances ( AQ) and {( AP) and Q and P,
the explicit form obtained for these quantities con-
firms the interpretation of the dissipative effect of
the spin system on the EM mode.

From Eq.(45) on, our discussion was restricted to the
study of the resonant mode w = w, = B. If, however,
w # w,,the situation is somewhat more complicated.
Three cases can actually occur depending on whether
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€ = |x0/w — w,| is smaller than, equal to, or larger
than 1. In particular, the spectrum of the quadratic
Hamiltonian (42) is: (A) discrete and semibounded if
€ < 1, (B) absolutely continuous, doubly degenerate
and semibounded if € = 1, and (C) absolutely continu-
ous on the whole of R if € > 1; actually in the later
case (42) is unitarily equivalent, up to a real multi-
plicative constant, to (44). Hence the kind of dissipa-
tive behavior observed for the resonant mode occurs
also for the nonresonant modes if and only if the
absolute value of the coupling constant A exceed a
critical value A = | (w — w,)/0| depending on w — W g
and, through o, on the temperature of the spin system.

5. CONCLUSION

We obtained the exact solution of the dynamics of an
electromagnetic mode (see Egs. 37-39) with an infi-
nite system of two level atoms (or spins) via two-
photon emission or absorption. This solution is ex-
pressed in an “interaction picture” (see Egs. 40-41,
and Appendix C) which separates the time evolution
into two parts. The first is akin to the free dynamics,
whereas the second singles out the dissipative part

of the evolution. To uncover the dissipative character
of the latter we treated (in Secs. 2 and 3) a simplified
model in which the microscopic observables are res-
tricted to the observables of the EM mode, the micro-
scopic Hamiltonian is given by Eq. (8), and the macro-
scopic observables are assumed to be the self-adjoint
elements of the maximal Abelian von Neumann alge-
bra I, to which the position operator Q is affiliated;
we found the macroscopic equation of the motion rela-
tive to M, (see Eqgs. 31 and 33). The underlying re-
versibility of the microscopic evolution shows itself,
on the macroscopic level, through the fact that the
Fourier transform, which changes Q into P, acts as a
time reversal operator for this simplified model; this
implies the existence of a set of observables, M (P),
obtained from M, = M,(Q) by a time-reversal opera-
tion P? = ¢ !P (compare with 33). Coming back to the
full model, we noticed that the effect of the free part
of the interaction picture leads to a uniform rotation
in the plane (Q, P). As a consequence, the combined
evolution leads in particular to the dissipative Eqs.
47-50, valid for all values of the coupling constant A
when the frequency of the EM mode is identical to the
resonant frequency w, = B (where 2B is equal to the
spacing of the energy levels of the individual atoms).
For the off-resonant frequencies, we show that there
exists a threshold in the value of the coupling con-
stant; below this threshold, the system behaves in a
conservative manner; whereas the type of dissipative
behavior described at resonance also occurs above
the threshold.

In relation with the two projection techniques which
we reviewed in Sec. 1, we would like to point out that
the passage (see Sec. 3) from the conservative, micro-
scopic description of the evolution to the reduced des-
cription relative to Q (or to P) is not, and actually
cannot be,17 achieved by a projection acting from
some Hilbert space £ to some Hilbert space DL. In-
deed, the continuity of the spectrum of 9, implies
(see in particular Eq.26) that the diagonal part p,
with respect to M, of a density matrix p on ®B(L2R))
is in general an element of £1(R) and the later is not
a subspace of the Liouville space £2(R2). This fact
illustrates an intrinsic limitation of the usual projec-
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tion technique in Liouville space and in particular
provides a reason for its failure to lead to a Pauli-
type master equation. The main point of the model
is to show that this difficulty can indeed be bypassed.
In the same breath, this shows also that the Sz-Nagy
theorem, however natural it might seem to be in this
connection, is actually not the universal answer to
the question of the compatibility of the mechanistic
and the dissipative descriptions of a physical system.
The physical model presented in this paper admits
both descriptions and does not conform to the scheme
suggested by this mathematical theorem.

The model also raises some interesting questions of
principle which we defer to answer here. The first
one is to understand to which extent the model is
generic. In fact, given Q = ¢ 'Q we can construct
£2(R,dx), M, = £L(R,dx) and {U*|¢ € R} in a canoni-
cal manner, and the conjugate variable P! = ¢ *P then
occurs naturally. This construction can clearly be
extended to the case of several independent dissipa-
tive modes with different decay times. The second
question raised by this model stems from its struc-
tural analogy with K- systems; we suggest that the
model might help elucidate the connections between
the mathematical theories of dissipative systems (see
for instance Arnold and Avezl4) and the physical
approaches followed by van Hovel® and Prigogine?,
for instance.
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APPENDIX A

The purpose of this appendix is to prove the self-
adjointness of some of the operators used in the main
body of the paper.

Lemma: Let {Ut|t € R} be a strongly continuous
group of unitary operators acting on some Hilbert
space JC and H be its self-adjoint generator. Let fur-
ther M be a dense linear manifold in D(H), stable
under {Ut|¢ € R}. Then the restriction of H to M is
essentially self adjoint.

Proof: For any complex X with Rex = 0,form
N = (X + iH)M, and let ¢ be in N+. We have then for
every ¥ in Mt

2 (@,Ut%) = (&, — iHU*¥) = A8, UL¥) (A1)
and, hence,

(¢,UtT) = er (T), (A2)
and, since M is dense,

Utd = e P, (A3)

which is incompatible with Rex # 0 unless & = 0.
We therefore conclude that (A + iH) M is dense in 3¢,
which is to say19 that H is essentially self adjoint on
M. Q.E.D.
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We now remark that the assumptions of the lemma
are satisfied for 3¢ = £2(R), {U*|¢ € R} defined by (7)
and M = $(R), thus implying that the Hamiltonian (8)
is essentially self adjoint on $(R).

This conclusion is easily transfered to the Hamil-
tonian (42) considered as an operator acting either
within £2(R) or within £2(R) ® 3, where JC, can be
any Hilbert space; in the latter case M is to be taken
as the linear span of $(R) ® ¥, and W,(¥ ® &) =

Besides establishing that (42) leads unambiguously to
the definition of a time evolution, this remark will
also allow us to prove the convergence implicit in
our use of the mean free field method. This will be
done in Appendix C.

APPENDIX B

The purpose of this appendix is to devise an interac-
tion picture adapted to computing the time evolution

of the expectation values of the observables relative
to the EM field.

We first rewrite (37) in the form

HQ) = GO(Q) + W(Q), (B1)
with

G,(@)=B{) oz + {a*a + %) (B2)

ieq
and ’
W(Q) = (w—B)a%a + 3) + Mo*(Q)aa + o-(Q)a*a™},
(B3)

where

() = N(Q) 1 2] of. (B4)

jen

We notice that

[G,(&), W(R)] = 0. (B5)

Furthermore, we remark upon comparing (B2) with
(38) and (B3) with (39) that at resonance {i.e., where
w = w, = B)Hy(@) = G,(R) and W(@) = AV(2). (B5)

implies that for any ¥ € £L2(R)® ¥ (2) and any A €
®(L2(R)) ® A(Q),

(y; At = (UHQ)Y, AUHQ)Y)
= (UEHQN, ULQ)AULQ)UE (Q)), (B6)
where {UHQ)|t € R}, {U4(Q)|¢ € R} and {U} (@)]¢ € R}

are the unitary groups respectively generated by H(Q),
G, (@), and W(Q).

For every A of the form B ® A(A) where B € ®(£L2(R))
and A(A) € A(A), and for every D A finite, (B6) re-
duces to

(W4 = (U @), UM AULMTHR)Y). (BT
Consequently, the Q@ -dependence of the time evolution
enters only through o*(R) in (B3), thus making much
more simple the convergence proof involved in re-
placing our original Hamiltonian by its mean free-
field approximation.

APPENDIX C

The aim of this appendix is to analyze in which sense
the mean free field method can be used to approxi-
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mate, in the limit where § tends to Z, the time evolu-
tion determined by the operator W(2) [see (B3)]. A
purely algebraic answer to this question is ruled out
by the fact that 0¢(2), although uniformly bounded, do
not converge in the norm topology as 2 tends to Z.

We therefore will attempt to work in the strong opera-
tor topology attached to the particular representation
used in the main body of this paper.

As usual, we denote by ¥ the C*-algebra of all quasi
local observables on the infinite spin system. We re-
call that ¥ is defined as the C*-inductive 1limit20 of
the algebras A () describing the spin system in the
finite regions Q:

A= U AEQ),
QcZ
where

(C1)
1O = 8 YU,

and ¥ , is the algebra of 2 X 2 mgtrices with complex
entri€s, generated by (7, o;, o]?', o;) for everyj € Q.

We now consider the state ¢, defined on 2 (2) by

<¢Q;AQ) = TrpQAQ

with (C2)

p,, = exp{— BH'(Q)}/Tr exp{— BH'(Q)}
and

H'(@)=—B 2Joj.

FEQ
We notice immediately that for every A, of the form
A, =8 A,
jea J
A 0 y (C3)

<¢j;;§0 aj0j> =a; +aj tanhgB,

where

u 0 1 2 3y _ ST
a;€C and(oj,Uj,Uj,Uj)—(Ij"’j’cj’oj)’

and that ¢, as a state on¥ () is uniquely determined
by (C3); we therefore use the notation ¢, = j?ﬁ ;.

For every A € U%(Q) there exists some finite Q, such
that A € % (@) for all Q@ D , and we can therefore de-

fine

(9;4) = lim (g; A) = (]_gA ;5 A).

9 (C4)

The linear function ¢ defined by (C4) is positive,
bounded, and normalized to 1. It can therefore be
uniquely extended to a state ¢, denoted @ ¢;,on the
whole C *-algebra . jez

We denote by I1,: % = B3, the cyclic representation
of %, and by & the cyclic vector, associated to ¢ by
the GNS construction. We want to assert that, in the
strong operator topology of B(IC,), II,(c*(R)) conver-
ges, We first notice that for allQ C Z

{¢p;0:(Q)) = = do,
where
o = 3 tanh8B.

(C5)
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Taking into account the fact that 0 < 02 < %, we see
that

(0 £(Q)) — o} ]2 < IN@)1. (C6)
It is then easy to check that for every element A in
UA(Q) and every € > 0, there exists some finite
Q(e,A) C Z such that

H{II,(c+(Q)) — ic}A® |2 < €,0Q D Q(e, A). oy
Since @ is cyclic and {0*(®) — io} is uniformly boun-
ded, we conclude that I4(0*(22)) converges to + i¢ in
the strong operator topology of G(3,).

We now consider the Hilbert space

Dy = L2R) O XK (C8)
and the linear manifold M, spanned by the elements
of the form ¥ ® ¢’ with ¥ € $(R) and &’ € 4. On
M, we then define (see B3)

Wy(@) = (w — B)a"a + 3)

+ 3 {aqu,(a*(Q)) +a*a*,0"(R)). (C9)

From the strong operator convergence of 74(0t(2))
to + ic on 34, we conclude that W,(Q) converges

strongly to W, = W, ® I, where

W, = (w —B)(@a*a + 3) + 3iro(aa — a*a*)  (C10)
on the linear manifold M, which is dense in H,. From
Appendix A we know that for any x» with Rex = 0
(A +iWy), M, is dense in H4. We can therefore con-
clude, upon using Thm. 5.2 in Ref. 21, that for each
t € R, U 4(Q) converges strongly to Uf , where
{va’q,(ﬂ)r’t € R} and {U{ 4|t € R} are the strongly con-
tinuous unitary group i‘espectively generated by W,(22)
and W,

The result of the above analysis is therefore that for
any ¢ € R, any vector ¥ € $, and any operator A of
the form B ® A(A) with B € ®(£2(R)) and A(A) €
IT4(A(A)), the limit as £ tends to Z, of (UHQ)Y,
AUHQ)Y) exists and is equal to

(Ut ¥, UFN)AUL(A) U 4 ). (C11)

In particular, if ¥ is of the form ¥, ® ¥_, we have

(W3 B © AN = (U o ¥y Uy BUSUY, %)

X (¥, UsHA)A(A) UHA) ), (C12)

where {Uf ;!¢ € R}, {U£, |t € R} and {Uf|t € R} are the
unitary groups respectively generated by
W, [see (C10)],
H, = wyla*a + 3),

JEA
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Lattice Green’s Function for the Diatomic Lattices
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Attention is called to the fact that the lattice Green's function for a diatomic alternating lattice (regular or
irregular) can be calculated from the lattice Green's function for the corresponding monatomic lattice. The de-
finition of the lattice Green's function is given in such a fashion that the imaginary part of the trace of the
function gives the level density. The values at the origin are shown by graphs for the square, sc, and bec
diatomic lattices; the sc and bce diatomic lattices are of the sodium-chloride and cesium-chloride type

crystal structures, respectively. Discussions are given of the analytic behaviors and symmetry properties.
The real part of the lattice Green's function is used to discuss the localized state of the one~impurity problem
in the diatomic lattices. Some symmetry properties for the monatomic alternating lattice are given in the

Appendix.
1. INTRODUCTION

Much effort has been paid for the numerical calcu-
lation and the investigations of the analytic properties
of the lattice Green's function of the regular monato-
mic lattices.! The discussions of the regular diato-
mic lattices are given in a few articles.2,3 Montroll
and Potts2 showed that the equation determining the
eigenvalues of a regular diatomic lattice is obtainable
from the corresponding equation for the monatomic
lattice by a simple transformation. Maradudin et al.3
used the same transformation in their discussion of
the asymptotic behavior of the lattice Green's func-
tion outside the band. For the monatomic lattices, the
imaginary part of the trace of the lattice Green'sfunc-
tion gives the level density. This property does not
hold for the lattice Green's function defined by these
authors for the diatomic lattices. In the present paper
we shall introduce the definition of the function in

FIG.1. An example of the “alternating lattice”. Note that this
lattice consists of polygons with an even number of edges.

such a way that the property keeps valid. We show
that the lattice Green's function for the diatomic lat-
tice as a function of complex energy variable is ex~
pressed by the one for the corresponding monatomic
lattice with the aid of a similar transformation as the
one used by Montroll ef al. With the aid of this ex-
pression, analytic properties and symmetry proper-
ties of the former are discussed from those of the lat-
ter. Those properties are illustrated by the graphsat
the origin for the square, sc, and bcc lattices.

General discussions in the present paper are given
for the lattices (i) which are composed of two sublat-
tices A and B and (ii) in which the interaction exists
only between the lattice sites belonging to different
sublattices. We shall name such a lattice an “alfer-
naling lattice.” Typical examples are the linear,
square, honeycomb, sc, bec, and diamond lattices, if

the interaction exists only between nearest neighbor
lattice sites. Regularity of the lattice is not required
above. Hence even when some sites are missing or a
deformation is applied, the above lattices are alternat-
ing lattices. A more irregular example is shown in
Fig.1. When all the sites are occupied by the same
kind of atoms, the lattice is called a “ monatomic alter-
nating lattice” When two sublattices are occupied by
different kinds of atoms and each by the same kind of
atoms, the lattice is called a “diatomic alternating lat-
lice” or simply “diatomic laltice” in the present pa-
per.

It is shown in Sec. 2 that the lattice Green's function
of the diatomic alternating lattice as a function of the
complex energy variable is expressed by that of the
monatomic lattice. The analytic properties and sym-
metry properties of the former are discussed with the
aid of those of the latter in Sec. 3. Those properties
are illustrated by the curves obtained for the values of
the function at the origin for the square, sc, and becc
diatomic lattices, in Secs. 4 and 5. In Sec. 6, the one-
impurity problem is discussed.
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Attention is called to the fact that the lattice Green's function for a diatomic alternating lattice (regular or
irregular) can be calculated from the lattice Green's function for the corresponding monatomic lattice. The de-
finition of the lattice Green's function is given in such a fashion that the imaginary part of the trace of the
function gives the level density. The values at the origin are shown by graphs for the square, sc, and bec
diatomic lattices; the sc and bce diatomic lattices are of the sodium-chloride and cesium-chloride type

crystal structures, respectively. Discussions are given of the analytic behaviors and symmetry properties.
The real part of the lattice Green's function is used to discuss the localized state of the one~impurity problem
in the diatomic lattices. Some symmetry properties for the monatomic alternating lattice are given in the

Appendix.
1. INTRODUCTION

Much effort has been paid for the numerical calcu-
lation and the investigations of the analytic properties
of the lattice Green's function of the regular monato-
mic lattices.! The discussions of the regular diato-
mic lattices are given in a few articles.2,3 Montroll
and Potts2 showed that the equation determining the
eigenvalues of a regular diatomic lattice is obtainable
from the corresponding equation for the monatomic
lattice by a simple transformation. Maradudin et al.3
used the same transformation in their discussion of
the asymptotic behavior of the lattice Green's func-
tion outside the band. For the monatomic lattices, the
imaginary part of the trace of the lattice Green'sfunc-
tion gives the level density. This property does not
hold for the lattice Green's function defined by these
authors for the diatomic lattices. In the present paper
we shall introduce the definition of the function in

FIG.1. An example of the “alternating lattice”. Note that this
lattice consists of polygons with an even number of edges.

such a way that the property keeps valid. We show
that the lattice Green's function for the diatomic lat-
tice as a function of complex energy variable is ex~
pressed by the one for the corresponding monatomic
lattice with the aid of a similar transformation as the
one used by Montroll ef al. With the aid of this ex-
pression, analytic properties and symmetry proper-
ties of the former are discussed from those of the lat-
ter. Those properties are illustrated by the graphsat
the origin for the square, sc, and bcc lattices.

General discussions in the present paper are given
for the lattices (i) which are composed of two sublat-
tices A and B and (ii) in which the interaction exists
only between the lattice sites belonging to different
sublattices. We shall name such a lattice an “alfer-
naling lattice.” Typical examples are the linear,
square, honeycomb, sc, bec, and diamond lattices, if

the interaction exists only between nearest neighbor
lattice sites. Regularity of the lattice is not required
above. Hence even when some sites are missing or a
deformation is applied, the above lattices are alternat-
ing lattices. A more irregular example is shown in
Fig.1. When all the sites are occupied by the same
kind of atoms, the lattice is called a “ monatomic alter-
nating lattice” When two sublattices are occupied by
different kinds of atoms and each by the same kind of
atoms, the lattice is called a “diatomic alternating lat-
lice” or simply “diatomic laltice” in the present pa-
per.

It is shown in Sec. 2 that the lattice Green's function
of the diatomic alternating lattice as a function of the
complex energy variable is expressed by that of the
monatomic lattice. The analytic properties and sym-
metry properties of the former are discussed with the
aid of those of the latter in Sec. 3. Those properties
are illustrated by the curves obtained for the values of
the function at the origin for the square, sc, and becc
diatomic lattices, in Secs. 4 and 5. In Sec. 6, the one-
impurity problem is discussed.
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For the monatomic alternating lattice, some symme-
try properties are noticed, which are given in the
Appendix.

2. BASIC FORMULAS

In this section, we consider a general diatomic alter-
nating lattice. We suppose that an amplitude (i) is
associated with ith lattice site and that (/) satisfies
the following equation:

[t + €@W6) — c@2IC N () =0, 2.1)

7

where ¢ is a complex variable, and J(Z, j) is nonzero
only when 7 and j belong to different sublattices. €(i)
and c(Z) in Eq. (2.1) take €, or €5 and ¢, or ¢z, res-
pectively, according as i is on the sublattice A or B.
c, and ¢g are assumed to be positive. €5 is assumed
to be larger than ¢, without loss of generality.

We shall define the lattice Green's function G(¢; 7, f)
as the solution of the inhomogeneous difference equa-
tion

[t + €@GE,f) — @2 IENGCG,f) = 8. (2.2)
j

If the lattice is finite, G(i, f) is defined for ¢ which is
not equal to any of the eigenvalues of the set of homo-
geneous linear equations (2.1). If the lattice is infi-
nite, the boundary condition is

GiE,f)—=0 as Ji—fl— o,
and G(z, f) is not defined for real ¢ which is inside of
the band.

We introduce factor g(f) which is equal to g, or g5
according as ¢ is on the sublattice A or B, where g,
and g; are defined such that

galt + €,)/gzcy = gp(t + €g)/gac, = 1. (2.3)
From this set of equations, one has

galgg = % (cg/c )12t + €5)/(1 + €,)]V/2, 2.4)

T=1x[(t+ €,)(t+ €g)cycg]t/2. 2.5)

In the following, we shall use the upper signs if other-
wise is not stated. The branch cut on the complex ¢
plane is introduced on the real axis from — ¢; to

— ¢,; of. Fig. 2(a). The branches of (¢ + €,)1/2 and

(£ + €5)1/2 are chosen such that they are real and
positive when { + €, and { + €5, respectively, are real
and positive. Hence if f =s —inands < — €, and 79

is an infinitesimal positive number, (s —in +¢€,)1/2 =

T. MORITA AND T. HORIGUCHI

—4iJ—s — €, where y—s — €, is the positive square
root of —s — ¢€,. Equation (2.5) is solved for ¢ as
follows:

L=—3(e, + &) + 1,
where

' =3(e, —€5)2 + dc, czI2]1/2,

2.5

The branch cut from — €3 to — €, on the ¢ plane is
mapped to the imaginary axis between = i(e; — ¢€,)/
2(c,c5)1/2 on the 7 plane as seen from (2. 5); cf. Fig.
2(b). The choice of the branch, stated above, corres-
ponds to use the positive real square root on the right-
hand side when 7 is positive. Note that #' changes sign
when 7 changes sign in this choice of the branch cuts.

We define function G(, f) by

GG, f) =gl + a)cl + a)GG, f)/e(f). (2.6)
Here 7 + a is a lattice site belonging to the sublattice
different from the one to which 7 belongs. We multi-
ply g(i)/g(f) to both sides of (2.2) and use the equality
(2. 3) and the definition (2. 6), and then we obtain the
following equation

(GG, f) — 2296 NG, f) = 8,5
7

This equation shows that the function G(i, f) is the
value of the lattice Green's function for the monato-
mic lattice at the variable 7. To show the variable 7
explicitly, we use the notation G(7; 7, f) for the solu-
tion of Eq. (2.7).

From the knowledge of the lattice Green's function
for the monatomic lattice, one can calculate the lat-
tice Green's function for the diatomic lattice via Eq.
(2. 6) or

o gNGE, )
G(t;4,f) = m

@.7)

@. 8)

The ratio g(f)/[gE + a)c(i + a)] is g4/85C5, 85/8aCa>
l/cB, or 1/c,. gA/gB and / are given by (2. 4) and

(2. 5), respectively. For instance, when f is on the
sublattice A, this equation is written as follows:

G(t;4,f) = (CACB)_I/Z[(t + €B)/(t + €A)]1/2 G(Z, iLf)
2.9)
if 7 is also on the sublattice A, and

G(t;4,f) = (/ea)G(F; 4, 1) (2.10)

if ¢ is on the other sublattice B.
We shall define function ¥ (i) by

FIG. 2. (a) Complex ¢ plane
and (b) complex 7 plane. Solid
lines show the branch cuts
which we use for the trans-
formation (2. 5) and (2.5’).
The dashed lines show the

(a) COMPLEX t PLANE (b) COMPLEX T PLANE
i (eg - eA)/Z“:\/ cacp
w,, W w, o, -G,  -@, @, @,
~€g —€,5
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places where the singularities
of G(4;4,f) and G(7;4,f), res-
pectively, can occur. wy, Wy,
wy,,and w,, are defined in
Sec. 3.
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W) = gl + a)c@ + a)y (@) (2.11)
we multiply g(¢) on both sides of (2.1), and then use
Egs. (2.3) and (2.11). As a result, we obtain

6 — T I6)FG) = o.
7

Let us assume that the lattice is a finite lattice com-
posed of N lattice sites. We introduce a function A7)
which is + 1 or — 1 according as 7 belongs to sublat-
tice A or B. Then we can easily see that, if #,(;) is an
eigenfunction of (2.12) with eigenvalue @ (k), then
A(f)w, (@) is another eigenfunction of (2.12) with eigen-
value — w(k); a proof is given in the Appendix. In or-
der to cover all the eigenfunctions, we use N/2 labels
k and + and — 4:

(2.12)

Wy @) =W, (), W, () = AG)Ww,G), (2.13)

Ak ) =+ G(k). (2.14)
We assume thatw,,(?) is normalized unity:

Zijlﬁ}ki(i)12=1. (2.15)

Without loss of generality, we assume that
w(k) = 0.

Substituting these sets of the eigenfunction and eigen-
values into (2. 3) or (2.5) and (2.11), we see that (2.1)
is satisfied for

=w(k 1), Y@ =w,,). (2.16)

Here
wkz)=—3z(e, + &) t3[(e, — )2 + dc,cyG(R)2]L/2,
2.17)
w,, Q) = Co,(k D)w,,(2) + Co_(k +)w,_(), (2.18)

where
Gk 1) = c}/2/|wlk +) + 1172 + c}/2/ lw(k 1) + €;[1/2,

¢_(k £) = c}/2/|w(k 2) + €,]1/2 7 cp/2/|w(k 1) + €172,

C = [¢.(k £)2 + ¢_(k £)2]1/2, (2.19)
When (2.18) is derived, the upper signs of (2.4) and
(2.5) are used for 7 = &(k,) and the lower signs for
F=wk).

In terms of the eigenvalues w{k +) and the eigenfunc-
tions w,,(¢) of Eq. (2.1), the lattice Green's function
satisfying (2. 2) is expressed as follows:

G54, f) = 2" 2 {wy; @ wh()/[t —w @]}, (2.20)
i
where the prime over the summation sign means that
the summation with respect to # is taken over N/2
labels. When{ = s — in with a real s and an infinite-
simal positive number 7, the imaginary part of this
expression gives

ImG(s —in; i, f) = WE Z) 6(s — w(kf)) wy;@)wi;(f).
(2.21)

By putting ¢ = f and summing over ¢, we confirm that
the level density per atom p(s) is evaluated by
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p(s) = (1/7) Im(1/NYZ G(s —in; i, ). (2.22)

By using (2. 8) or (2.9), one writes this as follows:

ps) = /1) Im[[(l/N)(l/cAch)Z)[s + €@ + a)) G(F;4,9)],

(2.23)
where

T=[s—in+ €)s —in+ €g)/cacg]2.

If the lattice is a regular lattice composed of twoequi-
valent sublattices, G(7;i,:) are the same for all lat-
tice sites 7, and (2. 23) reduces to

p(s) = (1/2m Im[[{[s + €,) + (s + €))/cacgt; C(T;4,0)].
(2.24)

For the regular lattices, the numerical calculation of
G(%;i,f) has been intensively discussed in a number
of recent papers of the present authors' group. Those
methods are useful for complex values of 7. In parti-
cular, if the level density is of interest, an extensive
tableS is available for the values at the origin of the
lattice Green's function G(f;7,7). The Chebyshev in-
terpolation formulas provided in the table will be use-
ful for the s.c. lattice. For the square and bcc lat-
tices, the expression in terms of the complete elliptic
integral of the first kind® is very convenient for the
calculation of G(7;4,1) for the complex values as well
as for the real values of 7.

In Secs. 4 and 5 curves for the lattice Green's function
G(s — im;i,1) for those lattices are given. For thatcal-
culation, G(7;4,1) for pure imaginary 7 is required.
That calculation for the b.c.c. lattice is performed
with the aid of the formula in terms of the complete
elliptic integral of the first kind.¢ For the case of the
sc lattice, the formula which expresses G(t ,i)as a
definite mtegral of a complete elliptic 1ntegra1 of the
first kind7 is used. It has been pointed out that the
applicability of the formula to complex ¥ is warranted
by the analyticity of the function.?

3. ANALYTIC PROPERTIES
We assume here that all the positive elgenvalues w(k)
of the monatomic lattice are between @, and @,:

wls&(k)sdz. @.1)

Then w(k +) given by (2.17) takes values from w,_ to
wy_ and from wy, to wy,:
Wi = wk) = Wo iy
w = wk)=w,,
where

(3.2)

1 -~
W, = —z(€4 + €5) £3[(€, — €5)2 + dc,cp@R]L/2

3.3)

Note that — €, = w, and w;_ = — €5; ¢f. Fig. 2. For
the regular linear , Square, honeycomb, s.c., b.c.c., and
diamond lattices, w; = 0 and hence

Wy, = — €, Wy = — €g. (3.4)

By (2.21), G(s —in;i,f) is real except for these two
ranges:

J.Math. Phys., Vol. 13, No. 8, August 1972
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ImG(s —in;¢,f) =0

fs<w, orw <s<w,, oruw, <s.

This fact can be confirmed by (2. 8) or (2.9) and
(2.10), considering that G(Z; 1, f) is real for > &, and
[ < — & and — @& <¢ <@ and that G({;¢, f) for pure
imaginary values of 7 is pure imaginary if ; and f be-
long to the same sublattice and real if ¢ and f are on
different sublattices. These properties of G(7;i,f) are
easily confirmed with the aid of formula (Al1) given in
the Appendix. As a result, we have an energy gap from
w;.. to wy,, which include the range from — ez to — ¢,.
Thus we conclude that there always occurs an energy
gap for the alternating lattice if €, # €.

When ¢ and f are on different sublattices, we have the
following symmetry relation:
G(—z(ey + €5) +154,1) = G(— 3 (e, + €5) —1';4,7)

= G(_%(eA + €B) - [’*; i’f)*’

3.5)

which is obtained by substituting (A11) into (2. 10).
follows from this relation that the real and imaginary
parts of the function G(s —imn; ¢, f) are symmetric and
antisymmetric, respectively, around s = — %(eA + €5)
for an arbitrary value of 7; cf. the argument in the
last paragraph of the Appendix for the monatomic lat-~
tice. If i and f are on the same sublattice, we have a
factor which is not symmetric around s =— (€4 + €5)/
2;cf. (2.9). What we have for this case is a relation

of the function for i and f both on the sublattice A
and that for i and f both on the sublattice B:

G(— %(EA + GB) + ¢ i,f)
=—Glz(e, + &) — ;i + a,f + a)

=—G(—3les + €) —t™i + a,f+ a)*. (3.6)
This relation is obtained by substituting (Al1) into
(2.9). It follows from this relation that the imaginary
part of G(— 3 (e, + €g) + t';4,f) for i and f both on

the sublattice A is equal to the imaginary part of
G(—3(e, + €5) —';4,f) for ¢ and f both on the sub-
lattice B. Their real parts are of different sign. This
property is observed in Figs.3 ~ 4 when (a) and (b) in
each figure are compared.

The singularities of G(;4, f) occur due to the critical
points of the spectrum (2.17) of the diatomic lattice.
The critical points of the spectrum w(k +) are deter-
mined by the 2 which make the first derivative of
(2.17) with respect to & to zero

dwik 1) _ 0
ok, T 7

for all components &, of wave vector 2. The critical

points are called “degenerate” or ‘“‘nondegenerate,”

according as the determinant of the Hessian of the

spectrum is zero or not.

The first derivative of w(kz) is given by

dw (k) 2¢,cp @ (R)OD (R)/0k 5.7)
ok,  [(a — €)% + 4c cp@(R)2]1/2T '
This expression is zero either when
dw(k) _ 3. g
ok, = O 3.8)
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or when

@(k)= 0. (3.9)
The critical points determined by (3. 8) have their
counterpart for the monatomic lattice. The critical
points due to (3.9) are new.

If (3.9) is not satisfied at a critical point determined
by (3. 8), the corresponding singular behavior is simi-
lar to the behavior of the monatomic lattice due to
the same critical point. This fact can be easily seen
by writing the expression for the determinant of the
Hessian. If those critical points are nondegenerate,
the singular behaviors due to these are easily obtain-
ed with the aid of the general formulas which were
recently given by the present authors.8 Such is the
case for the linear, square, and sc regular lattice.

If w;, which is the minimum value of &(k), is zero,we
have the critical points satisfying (3.9). The singular
points due to them occur at # = — ¢, and — €3 as seen
from (2.17). When (k) = 0, determinant of the
Hessian is given by
<8 2w(ki)>
ok kg
which is zero except for the one-dimensional lattice,
and we have degenerate critical points for two- and
three-dimensional lattices. In general, we expect the
higher singular behaviors for degenerate critical
points than for nondegenerate critical points, in so far
as any cancellation does not occur.® When (2.18) is
substituted in (2. 20), we expect such a behavior for
each of four terms. When ¢ and f are on different sub-
lattices, the coefficients cancel at the critical points.
Thus the leading term of the singular behavior will
cancel out. In fact, if we use (2.10) and calculate the
singularity of G(¢;4,f) from the behavior of G(7; 1, f)
around 7 = 0, we find that G(/; i, f) is analytic both at
I =—¢,and — € except when G(f;1,f) itself is singu-
lar at 7 = 0;in fact, this occurs for the square and
bce lattices. When both ¢ and f are on the same sub-
lattice, say A, a cancellation occurs at / = — €5 These
cancellations correspond to the fact that all the atoms
on the sublattice A are at rest at { = — €; and those
on the sublattice B are at rest at{ = — ¢,. From
(2. 9), we find that the singular behavior is given by
(t + €5)1/2 at t ~ — € beside the singular behaviors
of the corresponding monatomic lattice; cf. Figs. 3 and
4(a), ). In Fig.3, —w2 = — 3.0 and — 1.5 corres-
pond to f = — €5 and — ¢,, respectively, etc.

. 2ch0p

(3.10)

(a&(k) a&(k)>|
ok, kg /1’

€ — €,

When both ¢ and f are on the same sublattice 4, any
cancellation does not occur at { = — €,. The singular
behavior obtained by (2.9) is

G(t;i,f) = [(eg — €4)/cacy|V2G(E50, 1) (1 + €,)71/2
(3.11)
where

T = [(eg — €4)/c cqy]V/2(8 + €,)1/2 .

Here (s —in + €)/2 = —iv—s — e, if t =s —in

and s < — €, and 7 is an infinitesimal positive num-
ber. As 7 tends to zero, the monatomic lattice Green's
function G(7;4,f) is regular and finite for the linear,
rectangular (but not square), orthorhombic (including
sc) lattices. For the square and bee lattices, 7 = 0

(3.12)
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FIG. 3. The lattice Green's function G(— w?2; i, i) for
the s.c.diatomic lattice. G,, and Gy in (a) and (b)
denote G(— w?; i, i) for the cases when i is on the
sublattices A and B, respectively. R and I asso-
ciated with curves denote the real and imaginary
part, respectively. The imaginary part in (c) repre-
sents 7p(w?), where p(w?) is the level density of the

system.
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FIG.4. The lattice Green's function G(— w?; i, i) for the bee diatomic lattice.

is a singular point of G(7;¢,f), and G(¢;1i,f) involves
that singular behavior. The singular behaviors of
G(s —in;i,i) are as follows:

Square lattice:

7=s —inands is real. As s tends to zero,

G(s —in;i, i) = 2 + (i/m) Ings + O(s?). (3.13)
f = is and s is real. As s tends to zero,
G(is;i,i) = (i/7) Inks + O(s2). (3.14)

bece lattice:

I =s —inands is real. As s tends to zero,$> 9,10

G(s —im;i,0)
— — (2/m) Inks + [@/m2)(Ings)2 — 2] + O(s2).
(3.15)
f =is and s is real. As s tends to zero,
Gis; i,4) = —i/72)(Ini s)2 + O(s). (3.16)

The singular behaviors for the case when both ¢ and f
are on the sublattice B are obtained from the above
results with the aid of the symmetry properties of the
Green's function discussed generally in the paragraph
involving Eqg. (3. 6).

As mentioned above, the critical point corresponding
to @ (k) = 0 is nondegenerate for the one-dimensional
lattice. In a similar way to the cancellations discus-
sed above for the two- and three-dimensional lattices,
the singular behavior ({ + €4)71/2 or (¢ + ¢3)"1/2 for
the nondegenerate critical point8 is cancelled both at
t{ = — €, and — €5 for the case when ¢ and f are on dif-
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ferent sublattices and at { = — €; when ¢ and f areboth
on the sublattice A and at / = — €, when ¢ and f are
both on the sublattice B. ’

4. LATTICE VIBRATION

In this section we consider the lattice vibration of
regular diatomic lattices. The masses at the lattice
site on the sublattice A and B are m, and mpg, respec-
tively. Then the equation of the motion is given by

(—m@w? + Jo@u@) — 2J G ju(j) =0,
where !

4.1)

40 T T
4 (Gan +Gpp)
30t . SQUARE
|
| m, = 2
20 I 4
| m, = |
|
I =05
1.0 ! s
I
)
|
0 : ; :
20 30 40 50
L | ow?
|
-io | ' | R _
I I/ R
i |
) I
=20} ) [ B
I
[
30 | I i
30 '
i
[
-40 d 1

FIG.5. The average of the lattice Green's function G(— w?;1, ¢) for the
the site ¢ on the sublattices A and B, for the square diatomic lattice.
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Joli) = DG, j)-
J

We assume that the value of J(¢) depends only on the
sublattice on which i is situated. We denote the value
as J, or Jp according as ¢ is on the sublattice A or B.

We write this as follows

(-2 + 5 0) 46 — i DGt =0 6.2

and define the lattice Green's function G(i, f) by
1 . . 1 .

(9% + 5 9a®) 661 — 5 296

m(z)

X G(4,f) = b;5. (4.3)
(a)
4.0 Lo 1§ T T T
I
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I i
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| mg = |
-20F}
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I
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Applying the argument in Sec. 2, one has
G(— w24, f) = {{g(NmG + a)g + a} G(T;4, f),

where

and

&a mA<—mb2 + JB>1/2

gz mp\—muw? +J,

= [(—myw2 + Jz)(—muw? + J,)]1/2,
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4.4)

4.5)

(4. 6)

In the convention we adopted for the branch, we use
positive square root when w? is smaller than J,/m,
and Jp/my. When w2 is larger than both Jz/my and

40

3.0

20

-20

(b)
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FIG. 6. The average of the lattice Green's function G(— w2; i, ) for the site i on the sublattices
A and B, for the tetragonal diatomic lattice of various anisotropy constants.
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Jy/my, f is equal to the negative of the square root.
Equation (4. 4) for the case when f is on the sublattice
A is given by

Glwiif) =my( 2 ) e @
—muw? + J,
if ¢ is also on the sublattice A, and by
G(—w%i,f) =myG(T; i, f) 4.8)

if ¢ is on the other sublattice B.

The expression (2.22) of the level density reads as
follows for the present case:

pw2) = (/1) ImA/N)ZG(— w2 —in;i,43). (4.9)

i
This equation (4.9) is well known for the monatomic
lattice. We adopted Eq. (4. 3) as the definition of the
lattice Green's function so as to keep the property
(4.9) for the diatomic lattice. Maradudin ef al 3 intro-
duced the delta function on the right-hand side of (4.1)
in introducing the lattice Green's function. By their
definition, Eq. (4. 9) does not hold. With the aid of (4.7),
(4.9) is written as follows:

pw?2) = mymg/2m) Imf{[ — (my + my)w? + d, + 11}
x G(T;4,9)]. (4.10)

Figures 3 and 4 show [(2) and (b)] the real and imagi-
nary parts of G(— w2 — in; ¢, i) for the cases when i is
on the sublattice A and B, respectively, and (c¢) their
average of which imaginary part is equal to 7p(w?),
for the sc and bec lattices. It is noted that the
curves of (b) are obtained from those of (a) by an in-
version or a reflection at w2 = 3[(1/m,) +(1/mp)] J,,
where J, = J, = Jz. As a result, the curves of(c) have
the same symmetries around the same value of w2.
The graphs for the square and tetragonal lattices are
given in Figs. 5 and 6 only for the average of

G(—w?2 —in; i, ).

5. ELECTRON CONDUCTION

In the simplified treatment of electron conduction,

one considers only one Wannier state associated to
each lattice site and assume that the transfer integral
from site to site is nonzero only between nearest
neighbors.1! In such a system, one meets with the lat-
tice Green's function satisfying the following equa-
tionl1:

(—E + €@)GG,f) — LG NCG.f) = 8. (5.1)
F]
This equation is identified with Eq. (2.1) by taking

t=—E and c()=1. (5.2)

G(@,f) is now calculated by (2. 8) with (2.4) and (2. 5).

An example of the curve of G(— E; ¢, i) obtained for ¢
on the sublattice B is given in Fig.7. G(— E;,7) for i
on the sublattice A is obtained from the one for the
sublattice B by the symmetry property given in Sec. 3.
Note a similarity of the graph with a corresponding
graph given by Fig. 3(b) for the lattice vibration pro-
blem.

J. Math. Phys., Vol. 13, No. 8, August 1972

T. HORIGUCHI1

4.0 T |l
Ggp
s.C. .
R
! }
5.0
-E
EA =-1.5
€g = 1.5
J =05 i
- - L

-3.0

FIG. 7. The lattice Green's function G(— E:i,?) for the site
i on the sublattice B, for the sc diatomic lattice.

6. ONE IMPURITY PROBLEM

In this section, we investigate the eigenvalue problem
of the diatomic lattice when one impurity is substi-
tuted in place of a site. Let the site occupied by the
impurity be ith site. We assume that only the value of
€(i) is affected by the impurity. The eigenvalue pro-
blem is

[t + e@W0) —cDDJIG,IWG) = 6 8ep@).  (6.1)
]I

With the aid of the lattice Green's function G(¢; ¢, f)
defined by (2. 2), this equation is solved as follows:

Y (j) = AeG(L; 4, DY @). (6.2)
By putting j = ¢, we have the following dispersion re-
lation determining the eigenvalue f:
G(t;4,49) = 1/ a€). (6.3)
As discussed in Sec. 3, G(¢;1,7) is real when { > w,,»
t<w, ,and wy_ <?<wy,, Hf>w,,, we have a loca-
lized state as a solution of (6.3) when A€ is positive
and greater than a threshold value G(wy,; ¢, ¢y 1. If
t < w,_, a localized state occurs when A€ is negative
and smaller than G(w,_; i, ¢)"1. We notice in the
curves given in the preceding sections that G(¢; ¢, i)
takes values from — ©to 0 and from 0 to + © between
the two bands (. <f <w,) according as 7 is on the
sublattice B and A, respectively. As a result, the loca-
lized state always occurs in this range of energy, if
A€ is negative and ¢ is on the sublattice B or if A€ is
positive and ¢ is on the sublattice A.

For the problem of lattice vibration investigated in
Sec. 4, the above discussion applies if the impurity is
isotopic. Ac€ is then replaced by Amw2/m(i) = —Aw?2
where Am is equal to the impurity mass m' minus
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FIG. 8. The frequency of the localized state for the one-impurity problems of the diatomic lattices.

m(i). The top w; of the bands in this problem corres-
ponds to w,_. The localized state above the top of the
band occurs when Aw? is positive and greater than

— G(— wg; 4, ¢)"1 or the impurity is lighter than thres-
hold value m(i){1 — [wZ G(— w2; ¢, )]"1}. The localized
state between the bands always occurs when one of

" the lighter masses is replaced by a heavier impurity,
or one of the heavier masses is replaced by a lighter
impurity. The frequency of the localized states is
shown in Fig. 8 for the square, s.c., and b.c.c. lattices.
For the case of the linear chain, this property has
been discussed by Mazur ef al.12

7. CONCLUSION

It is shown that the calculation of the lattice Green's
function for the diatomic alternating lattice is
straightforward from the lattice Green's function for
the corresponding monatomic lattice. Some symme-
try properties are found to exist for general mona-
tomic and diatomic alternating lattices. For the dia-
tomic lattice, a gap is found to exist if €(?) in (2. 2)
are different for two sublattices. As this gap occurs
even when the lattice is not regular, this gives another
example when a gap occurs for a nonregular latticel3

It has been pointed out that the localized state always
occurs between the two bands for the linear chain,
when one of the lighter masses is replaced by a hea-
vier impurity or when one of the heavier masses is
replaced by a lighter impurity.12 It is found that this
situation is the same also for the square, sc, and

bece lattices. The situation is compared with the
one-impurity problem for the linear, square, and fcc
monatomic lattices, when the localized state always
occurs above the band when the impurity mass is
lighter than the host atoms. It is a consequence of the
divergence of the real part of the lattice Green's func-
tion at the top of the band. This property for the fcc
lattice was recently noticed by one of the present
authors,14 after the curves for the lattice Green's
function were obtained for the fec and bee latti-
ces.”»9

APPENDIX: SYMMETRY OF THE LATTICE GREEN'S
FUNCTION FOR THE MONATOMIC ALTERNATING
LATTICE

As in the text, we consider an alternating lattice com-
posed of two sublattices A and B. In this appendix, we

discuss some of the symmetry properties which are
valid for the monatomic case, and the notations y (2)
and G(¢; 4, f) are used to denote the quantities for the
monatomic lattice. The lattice is assumed to be finite.

Amplitude ¢ (¢) is associated to lattice site i and is
assumed to satisfy

W) — DI, G) = 0. (A1)
J

When the lattice is finite, this equation represents an
eigenvalue problem. The lattice Green's function
G(t;14,f) is defined by the difference equation

1G4, f) — 22d(, )NG(t;5,f) = 8y, (A2)
J

where ¢ is not equal to an eigenvalue of (Al). J(, j)
are assumed to be nonzero between pairs of 7 and j
which belong to different sublattices.

It is proved in this appendix (a) that, if w,() is an ei-
genfunction of (Al} with eigenvalue w(k), A@)w,(i) is
another eigenfunction of (Al) with eigenvalue — w(%)
and (b) that the Green's function G({; i, f) satisfies the
following symmetry property:

G(—t;4,f) = — a@)a(f)G(¢; 4, f), (A3)
where A{f) is unity or minus unity according as i be-
longs to the sublattice A or B. In the next place it is
further assumed that J(i, j) are real: J(, j) = J(, 7)*.
It is then proved (c) that

G(t;4,F)* = G(t*%;4, f). (A4)
The symmetry properties derived from properties
(A3) and (A4) are discussed. It is further assumed
that J(Z, j) is symmetric and proved (d) that the level
density p(s) has the symmetry that

p(—s) = p(s). (A5)

(a) w, () is an eigenfunction with the eigenvalue w (k)
w(k)w, @) — 23JG, Hw,(j) = 0. (A6)
i
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We multiply — A(7) to this equation and note that

A@JE, J) = — A(DIGE, 7, (A7)
and then we have
—w®[AQw)] — LJCENA(Hw)]=0.  (A8)
J

This means that A({)w,({) is another eigenfunction with
eigenvalue — w(k).

(b) We multiply A(F)A(f) to (A2) and write it as fol-
lows:

(= O[— 2QANGE 4, 1] — 26 N~ alHa(f)
7

X G(t§j;f)] = 6if-

where use is made of (A7) and AG)A(f) 6, = 0;;. By

comparing this equation with (A2), we identify
— A@)A(f)G(t;4,f) with G(— ¢;4, f). Thus we confirm
(A3).

(A9)

(c) We take the complex conjugate of Eq. (A2) and have
PG(La ) — LI NC(t: 4. )* = by (A10)
j

if J(Z, j) is real. This equation means (A4); ¢f. (A2)
which defines G(t*% ¢, f) for variable #*.

By using (A3) and (A4), we have

G(=s —in i, f) = — AQ)A(/)GE + in; ¢, f)

= — A@A(f)GE —ind, f)* (Al1)
for an arbitrary value of 1 and, hence,
ReG(—s —in i, f) = — AQ)A(f) ReG(s —in; i, f) (Al2)

T. MORITA AND T. HORIGCHI

ImG(—s —in i, f) = AGA(f) ImG(s —in;i,f). (A13)
(d) By virtue of the above statement (a), the set of
eigenfunctions and eigenvalues can be expressed as
wy, (@) and w(k+) as follows:

) wk(i)
= (a14
A@) w, (@)
w(kt) = + w (k).
We assume that w,, (i) is normalized to unity
22 lw,, ()12 = 1. Interms of w,, (i) and w (kz),
G(t;4,f) is expressed as follows:
) W, (B w,;* (
cif) = 7 3 2O V) U) (A15)
ko5t 1 — w(ky)

When J(Z, j) are real and symmetric, all the eigenva-
lues w(kt) are real. By putting { = f and summing
over i, one has

p(s) = (l/nN)Z) ImG(s —in; i,1), (A186)

where 7 is an infinitesimal positive number. Using

(A13) into this equation, we find that
p(=s) = p(s). (A17)

The symmetry properties (A12) and (A13) for differ-

ent ¢ and f are observed in the curves drawn by
Horiguchil$ for the sc lattice.

In the above derivation, the lattice can be an irregular
lattice or J(7, j) = J(j, ) may be random variable.

For instance, the above properties must be applicable
for the two-dimensional lattice shown in Fig.1, when
the nearest neighbor interaction is assumed.

* On leave of absence from the Department of Applied Science,
Faculty of Engineering, Tohoku University, Sendai, Japan.
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The use of operator-valued reproducing kernels is introduced in order to solve Cauchy problems, 0N/d¢ = HN.

A series development of the solution is obtained in terms of the orthogonal functions ¢,(2) in a domain G con-
taining the spectrum of the bounded operator H. The optimal character of the approximate solution is stressed.

1. INTRODUCTION

Reproducing kernels have been introduced in the
mathematical literature by S. Bergman! and N. Aron-
szajn.2 Their usefulness has been demonstrated in
the field of conformal mapping1.3.4 of partial differen-
tial equations® and of numerical quadrature.® We
plan to show in a series of papers, of which this one
is the first, that the reproducing kernel method can
be applied to new fields of mathematical physics,
provided that we extend their definition to operator
valued kernels. Among possible applications, we
mention the solution of the abstract Cauchy problem
dN/ot = HN with given initial condition N{(0) and time-
independent operator H; perturbation theory with
application to the Born series and variational esti-
mates of linear functionals.

The solution of abstract Cauchy problems which is
the subject matter of this paper (I) and its companion
(1) is usually a formidable numerical undertaking
whenever H is an operator in E” withn > 2.

The necessity of taking small time steps is obviated
in the reproducing kernel method by a series solu-
tion where the time dependence is factored out as in
the Neuman series. But although the Neuman series
solution is rather inefficient (and incorrect asympto-
tically), the series obtained by the reproducing kernel
method are, in sense, to be defined later (Sec. 3A)
optimal from the point of view of convergence.

A knowledge of the spectrum of H is essential for
even a qualitative knowledge of the solution. We pro-
pose below a method which takes advantage of any
knowledge of the spectrum or at least of the regions
containing the spectrum. However the search of
eigenvalues and eigenfunctions is avoided.

The main characteristics of the method are sum-
marized as follows:

— analytic “time” dependence is combined with
numerical “space” dependence;

— the whole time dependence is obtained at once and
the solution N (7, {) at one time can be computed
independently of previous times;

— the large number of time steps in the conventional
method is avoided and we have instead only a few
(a dozen at most) time-independent problems to
solve;

— the accuracy can be indefinitely increased without
discarding previous results,

We summarize in Sec. 2 the main properties of re-
producing kernels. We show next how operator valued
kernels can be defined; the case of compact operators
and Hermitian operators is dealt with; the choice of
the optimal weight function associated with the repro-
ducing kernel is shown to be closely related with the
operator's spectrum.
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2. REPRODUCING KERNELS

A. General Properties

Since an extensive use of reproducing kernels will be
made in this paper and following, it has been found
useful to collect in this paragraph, the main proper-
ties of reproducing kernels, which are somewhat
scattered in the literature.l.2

1. Let E be an abstract set and F a linear class of
complex-valued functions defined in E. The class F
constitutes a Hilbert space with inner product (f, g) =
(fx), g(x)),. Although much of the general theory
applies without the assumption that F is separable,
we shall for convenience make this assumption.

The function K(x,y) of x and y in E is called a repro-
ducing kernel of F if

(i) for every y,K(x,y), as a function of x,c F,

(ii) the reproducing property is verified: for every
y € E andevery fe F, f(y) = (f(x),K(x,y))x(- y
2.

2. The following theorem has been demonstrated by
Aronszajn and Bergman: “F has a reproducing kernel
K if and only if there exists, for every y, € E,a
positive constant C(y,), depending on Yo such that

lf(3o)l < C(y) I £l forallfe F. @. 2)
3. We can introduce a basis of orthogonal functions
{f,} for the Hilbert space, with

(fl/’fp): GZ. (23)

The kernel function is defined in a formal manner by

]
K(x,y) = ljglj‘lj(ﬁc)fu(y) for x,y ¢ E, (2. 4)
The definition has a meaning only if the series con-
verges. However if K (x, y) belongs to F, with pro-
perty (2. 2), the series converges.

The following minimum problem: min(f, f) with
f(y9) = 1,/ belonging to the closure of { f,} has the
solution

f(x):K(x,yo)/K(yO’yo)y (2 5)
and the value of the minimum is
(f:f) = I/K(yO’y())- (2. 6)

4. If a reproducing kernel exists, it is unique.

5. If the class F possesses a reproducing kernel
K(x,y), every sequence {fn} which converges strongly
to a function f in F, converges also uniformly in
every subset in which K (x, x) is bounded. Indeed,
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LFy)— 1, D= lf—f, (K (y, ))L/2.

B. A Space of Entire Analytic Functions

As a particular class F we have a class of entire
functions of one complex variable 27 where z € E,
the whole complex plane. They define a Hilbert
space with inner product

(f,8) = | fe)EE)dp,
with
dp, = (1/7)e”'#*dw,, dw, the elementary area.

2.7

Since?
f(z) < e1/2'22| fli| F admits a reproducing kernel
M(z,t) = e, (2. 8)

The class of entire functions is a class for which

(f, /) <.

We may also use the class F’ of functions ¥/(z) =
e 1/272%f(z), where f € F, which define a Hilbert space
with inner product

W,0) = [ w29y, withdy, =dw,. (2.9
The reproducing kernel is
K(z,t) = e 1/2)z-¢1%, (2.10)

C. The Space L,(G)

Let G be a bounded and simply connected domain in
the complex plane z. We define the class L,(G) as
the class of holomorphic functions f(z) defined in G,
with scalar product (f,g) = fc f2)g(z)dy,, where
p(z) is a measure, and such that (f,f) < «©,

We shall from time to time use the special case
where dy, = dw, with dw, = dxdy. The reproducing
kernel associated with L,(G) and the measure p(z)
will be written M(z, £). On the other hand the repro-
ducing kernel associated with L,(G) and the measure
w(z) will have the distinct notation K(z, ¢) on behalf of
its greater importance.

The importance of L,(G) is connected with the follow-
ing minimum problem.

P1: Let ¢ be an interior point of G and let u =
h(z), h(t) =0, h'(¢) = 1, be the conformal mapping of
the interior of G into the interior of a circle |u| = R.
Let dp, = dw,. Find the function F(z) € L,(G),

F(t) = 1, such that (F, F) is minimum.

The solution is Fy(z) where

z
u=hz) = J, Fo)dv. 2. 11)
The Bergman kevnel is given by
K(z,8) = Fy(2)/(Fg, Fy). (2.12)

Property (2. 4) may be rewritten in the following
mannerl: let {¢,(2)} be a closed system of orthogo-
nal functions, which belongs to L,(G), with (¢,,¢) =
6;, then the series
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(o} ——
M@z, §) = U21 Pul()dy(€) (2.13)
converges uniformly and absolutely in any closed
domain which is entirely in G, to the reproducing
kernel M(z, {). The kernel is analytic in z,¢ € G.
We have the reproducing property,

€)= [ ME D)y, for fe Ly(G).  (2.14)
For the special case where dp, = dw,, the repro-
ducing kernel may be written as

K(z,8) = (1/1) [0 Y2 (©)/[1— h(DRE)]2. (2. 15)

It is therefore independent of the choice of the {¢,}.
It is easily seen that since %'(z) # 0 because 2(z) is a
one to one mapping,K (2, £) cannot have zeroes for
z,teG.

Let us note, however, that the value of M(z, £) de-
pends not only of the domain G, but also of the mea-
sure p(z),i.e., of the definition of the inner product.

D. The Space L,(C)

Let C be the boundary of the closed bounded domain
G defined in 2C. We assume that C is an analytic
curve, We define the class L,(C) as the class of
holomorphic functions f{z) defined over C + G, with
inner product (f, g) = |, f(z)g(z)dp,, where u(z) is a
measure, and such that (f,f) < «©. The reproducing
kernel associated with L,(C) and the measure p(z)
will be written M(z, £}). The reproducing kernel asso-
ciated with L,(C) and the special case du, = ds
where ds = |dz| ig the line element will have the
distinct notation K(z, ). When dp, = ds, the space
L,(C) is connected with the following problem.

P2z: Let £ be an interior point of G and let u =
R(z), R(t) =0, 7' (¢) = 1 be the conformal mapping of
the interior point of G into the interior of a circle
u = R, Find the function F(z) € L,(C), F(¢) =1 such
that (F, F) is minimum, £ € C. The solution is

~ "dn\1/2 ~
Fole) = (i‘@) , where u=h(z)= [ F2@).
dz (2. 16)
The Szego kernel is given by
K@, t) = Fo2)/(Fy, Fy). (2.17)

Property (2. 4) may be rewritten in the following
manner!: Let {3,(z)} be a closed system of orthogo-
nal analytic functions which are regular in G + C and
belong to L,(C), with (¢, ) = b}, then the series

e, ) = 2 $v(@)bu ) (2.18)

converges uniformly and absolutely for z, £ in any
closed subdomain of G to the reproducing kernel
M(z,£). We have the reproducing property,

£©) = [ Mz, 0 f@)du, for fe Ly(C). (2.19)

Since I?g(z) = Fo(2), we have
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[K, 0)/R(E, )] = (2. 20)

§)/K(, 8,
which yields a useful relation between the Bergman
and the Szegd kern ?1 valid for simply connected

domains G. Since J;|F(2)|2dw, = 7R2 and
fCIFO(zHst = 21R,

an(K(z,£)2 = K(2, ) (2.21)

and

K(z,8) = (1/2m)0Vr' @ ©) {1/[1 — k(2R (©)]}. (2. 22)

E. Miscellaneous Properties

Let F, be the class of polynomials of degree at most
n and let us assume that F, is a subclass of the class
L,(G) defined in 3C. This is certainly possible for

dp, = dw,, although it may not be possible for
arbitrary u( ). We can restrict therefore the {¢,(z)}
to orthogonal polynomials. We define the partial
reproducing kernel

o0

EO ¢v ()P, (©)

M, () = (2. 23)
associated with the class F,, which projects functions
f € Ly(G) with F, C L,(G) into the subspace F,.? The
partial reproducmg kernel M, (z, {) converges uni-
formly and absolutely to M(z, C ) as n — © provided
that F,, C L,(G) for all n. Completely similar pro-
perties are obtained for the partial reproducing ker-
nel M, (z, ¢) associated with F, © L,(C). We can ex~
tend the definition of the partial reproducing kernel
by simply truncating the sum in (2, 13) for an arbi-
trary closed system of orthogonal functions which
belong to L,(G). However we note that if M(z, ¢) de~
pends only upon G and the metric associated with G,
i.e., dp, the partial reproducing kernel is not unique
and depends also on the choice of ¢,(z)

A simple relation between M(z, £) and K(z, £) may be
obtained in case du, = |p(2)|2 dw ,where p(z) is a
regular, single-valued analytic function inG+¢C
which does not vanish in G + C. If f(z) € L,(G),

[ M@E,0lp @12 f@)dw, = f(0). (2.24)
Since p(z) = 0 in G + C, any function of L,(G) with
du(z) = dw, can be brought in the form p(z)f (z) where
f(z) € L,(G) associated with dp, = |p(2)|2dw, and
therefore

I p MG, O PRI[P (@)1 ()

=p(O)f(5) (2.25)

which yields
(2. 26)

The same relation is obtained for the class L,(C),8
with dp, = |p(z)|2ds,

Rz, ) =p @)D Mz, ¢). (2.27)

3. SOLUTION OF A CAUCHY PROBLEM
A. Operator-Valued Reproducing Kernels

(a) We have the abstract Cauchy problem: to find
N{(t), a solution of

— = HN
ot

where initial condition N(0) is given.

We assume that H is bounded and defined everywhere
(and therefore closed), independent of ¢, with range
and domain in a Hilbert space X.

More precisely we assume (i) H is bounded and de-
fined everwhere (ii) IR, (H)] < const/x — w for
real A > w, for some real number w.

Then H is the infinitesimal generator of a strongly
continuous semigroup 7'(¢) such that |T(#)ll < Cewt.
The solution of (3. 1) is unique and given by?®

(3.2)

for any vector N(0). Condition (i) will be satisfied if
the haliplane Rex > w lies in the resolvent set of H,
which is the complementary set of the spectrum o(H).

() Let F(H) be the class of complex-valued func-
tions f such that (i) the domain of definition A(f) is
an open set of the complex plane which contains o(H).
(i) f is analytic at each point of A(f).

Since H is bounded, it is possible to select a bounded
simply connected domain G such that A(f) C G. Let
G’ be a simply connected domain such that ¢(H) C G’
and G’ C A(f), the boundary B(G’) is a closed recti-
fiable Jordan curve.

We define the function f(H) by the Dunford—-Taylor
integral

|

3.
omi “+BG) 8.3

fH) = JOIR, H)dh.
(¢) We can define the reproducing kernel K(z, ¢)
associated with the domain G for the class L,(G).

For fixed z € G, K(z, £) is a bounded regular analytic

function of ¢ € G’ provided G’ is a subdomain en-
tirely in G; otherwise K(z, {) may not be defined.

Therefore for fixed z € G, K(z, £) is a function of
¢(¢ € G'), which belongs to F(H), and

1
Kz, H) =5 [ Klz, NR,(H)ax (3.4)
Similarly,
1
K, (z, H) 2—f s, Knl@s VR (H)AA (3.5)

K, (z,H) converges to K (z, H) in the uniform topology
of operators.? We can define similarly ¢, (H).

(d) Let f(z) = K(z, HIN(0) for z € G, which is a vec~
tor-valued function of z, defined in the Hilbert space
3. Let{x,} be a complete set of elements of .
Then if we write the inner product in & by (x,» to
avoid confusion with the inner product in Lz(G),

(pf ) = o= [ KNy RGOV (5.6)
Since (x,, R, (H)N(0)) is a bounded function of X for

X € B(G"), the integral is a regular single-valued
function of z for z € G.

In order to prove that {x,, f(z)) belongs to L,(G) with
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measure dy., = dw,, we evaluate the norm. Let

fk(z) = (xk,f(z» and gk(h) = <Xk, )\(H)N(O»’
(f1(2), f1(2)) = do, [ axn [

d,
+B(G") +B(G")

1
(21)2 6
X K(z, MK (2, 2)g,()g, ().

3.7

By Fubini's theorem and using the reproducing pro-

perty,
1 ’
(/&) (2r)2 f+3(cl> a fm(cf) a

K\, Mg, Mg ()

(2)) =
(3.8)

Since g,(), &0'), K(,1’) are bounded for ,)’ €

B(G’) (which is entlrely in G) and since B(G) is rec-
tifiable, || f ,(z) || < © and f,(2) belongs to L,(G) asso-
ciated w1th du, = dw,. Each component of the vector-
valued function f(z) bemg in L,(G) we may speak, for
short of “functions” f(z) in L,(G), and apply all pro-
perties of Sec. 2.

For p ¢ G, we know that 1/(p — z) belongs to L,(G) for
dy, = dw,.

Therefore,

= (1/(p — 2),f(2)) (3.9)

exists and is a vector-valued function of » in Hilbert
space JC,

Therefore,

F(i))=<———1 ,K(z,H)N(O)):f dw, —2— L
p—z
x\f

+B(G")

Kz, )R, (H)N(0)dr. (3.10)
By means of Fubini theorem:

F(p) = ,f dxf

+B(G') — 2

-1 B
= f RA(H)N(O)p _A.

2mi “+B(GY) (3. 11)

Since 1/(p — ) belongs to the class F(H) for p € G,
the last integral is R, (H)N(0).

{e) As is well known from semigroup theory,

TEN0) = [B(G,) e?'R, (H)N(0)dp (3.12)
Substituting (3. 10) into (3. 12),
TONO) === [ ertdp L@dwz.(s. 13)
Again by Fubini's theorem,
1 _ebt
TEW () = [, K&, HNO)dw, - fB(G,) Py
(3.14)
or
t) = [ e*t K(z, HIN(0)dw, = (e*t,K (2, HIN(0)).
¢ (3.15)

Equation (3. 15) is the main result of this paper.
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Although we have used everywhere the space L, (G)
with du, = dw,, all results derived so far in Sec. 3
are valid for the reproducing kernel M(z, H).

Therefore we can write

N@) = fG e Mz, HIN(0)dy,. (3. 16)
Substituting (2. 13) in (3. 16),
=2 6. ENO) [ 5, @)du,, (3.17)

which yields a useful and efficient algorithm, as we
shall see later. An interesting feature is the large
freedom in the choice of Gand pu,.

It can be easily seen that a similar result is obtained
for Szegb kernels,i.e.,

£ = fc eztil (z, HYN (0)du,. (3. 18)

B. The Optimum Filtration

We shall solve the problem of the optimal choice of
G and u(z) for two important cases:

(a) H is a bounded self-adjoint operator,

(b) H is a normal compact operator.

1. H is a Bounded Self-Adjoint Operator
Let &, be the family of projectors associated with H.
The resolutmn of the identity is writtenl2

Hx = fm Adé x. (3.19)

Let us assume for simplicity that the spectrum is
purely continuous. The generalization to a mixed
spectrum is obvious.

There exists a finite or infinite system of elements
Q) = &, 9, € X such that, if AfQx) = f(B) — fla),

@) (A8, 3, 88,3, =0
(b) (A&, ¥y, AEY,) =0

fork = 1,

if intervals A, and A, do
not overlap,

(c) the elements Afy(A) for £ = 1,2, -+ and for all
intervals A, form a complete system in 3.

Then
pk(A) = H 8)\ kaZ

is a nondecreasing function of A.

We have .
v Ky, 8)\yk>
= ——d 3.20
6,9 Zk; l dp,(}) Ex7e ( )
Let
_ &N(0), §,3,) s 91
0 A) = do, ) (3.21)
with "
§NO) = [* T 040 (3. 22)
M, 1w ©) =5 [ mie, ) ZEO O g,
’ dp, () 6.23)
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Therefore

M ——
= [ eviap, % L Mz, )o,00d7,0). (3. 24)
Let us consider a family of approximate reproducing
kernels M, (z,¢),n = 1,2,..., which is so far arbi-
trary, except that M, (z, ) belongs to L,(G) and con-
verges uniformly in z, € G to M(z,¢),as n = o,
We define, correspondingly, approximate solutions
of (3.1) by

M _—
= [, estdp, %} L M, (z, Mo, 0)df,(0). (3. 25)
The uniform convergence of M, (z,1) to M(z, ) en-
tails the uniform convergence of N, (t) to N{(¢). The
error is

N@) — R t):fGeztduzkEf:[Mz X

— M, (2, })]o,0)df, (1)

Applying Schwarz inequality,

(3. 26)

| N (£)
with

-,
e =2 L [Mf] Mz, 1) |z, )
— M, [z, M)]o, (Mo, (W {df,(\), df, (). (3. 28)

@12 = [ e2tRendy, [ hiz)dp, (3.27)
Mz, p) —
However,

(df, (), df (u) = (d8, f,,d8, f)
= %6 ( — ) (d8, f,(0), d&, £, (AN

= 650 (A — p)dp,(\). (3. 29)
Therefore
E |M(z,A) — M, (z,\)12]0,(0)|2dp,(0). (3. 30)
Since
5 loy0) 2y 0) = 23 X 620 dW, E3y)
E k dp,
=(N0),d&,N(0), (3.31)

IN®—~F, 02 < [ e2Rendy, [ dy, me M(z, n)

— M, (2,\)|2(N, d§N),  (3.32)

1\7" (z, 1) being so far arbitrary, we assume that
M,(z,)) € L,(G).

The best approximation will be obtained as a two
step procedure: First minimize

L) (z) = f |M(z,)) — (2, 1) 12(N, d§,N) (3. 33)
for a given z, and then minimize
= fG L, (2)dp,. (3.34)

If we had used the Szegd kernel instead of the Berg-
man kernel, i.e., Eq. (3. 18) instead of (3. 16), we would
have to minimize J, = fCL;(z)duz.

2. His a Compact and Novrmal Operator

We shall assume that the eigenvalues are simple.
The resolution of the identity is written
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Hx =25 A, P,x, (3. 35)
k

where P, is the eigenprojection associated with A ,.

Let N(0) be developed in terms of the complete set of

eigenvectors ¥,

0) = Zk) 0, Vs (3. 36)

Since

M(z,H)N(0) = Zk) M(z,\ )0, Wy, (3.37)
the same reasoning as in b, leads to the minimization
of

J, = | Lie)dp, (3. 38)
with
L) = 25 1Mz, g) = M, (2,2 ) o |2
or
Li@) = [ |M@0) — 1, @ 0200 do,  (3.39)
with
p(A) = Ek lo, 12600 — 1 ). (3. 40)

We introduce now the superscripts G and R to dp§,
duf to emphasize the corresponding measures.

We can summarize both cases by

IN®) — R, @l2= J, [ e2¢Rendug (3. 41)
with the optimal choice obtained from
min J, = mlnf dug f |M(z,)) — M, (z,2)|2dpE
= mmfG duSL, (z),  (3.42)

where R is given, as well as duf. On the other hand,
we have the freedom to choose G = R, the metric
dp¢,as well as M, (z,\) € L2(G),for z € G and X €R.
The reproducing kernel Mz, ) is determined as soon
as G and du$ are fixed. In case of an Hermitian
operator, du}f degenerates into a one-dimensional
measure.

3. Choice of the Optimal Reproducing Kernel
We shall assume we have a family of bounded do-

mains G, with

G1D G2+ G, Donn,
such that the norm associated with L ,(G, ) is a mono-
tone function of #,i.e.,

Ifllg, > ”f”Gn-l (3. 43)
Obviously if f € L,{(G,),then f € L,(G,_1). We in-
troduce now the following extremum problem.

P3: Let GandR C G,,i=1,2,--

Let ¢, (z) be a regular single-valued function such

that
o,z =1, v=12...,n,
(3. 44)

((pni (pn—y)R = 0’

and
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minlle, .

Bergman has shown! that the set {¢,},n =0,1,---
is orthogonal over R,and also over G. It is closed
with respect to L,(G) but not necessarily so for
L,(R). This will be the case if R is bounded by a
finite number of distinct Jordan curves and the inner
region of R is such that it separates no point of

G — R from the boundary of G. We can always
choose G and R in this way.

We have llg, 2 = &, > 1, the inequality resulting

from the norm monotonicity. The set {¢,} is unique.
We have also the dual problem,

I, le=1, Wu¥pep)e=0,

v=12---,n
(3. 45)

and max |y, [l,. We have ¢, =¥, k1/2 and |y, 1% =
1/k, < 1. We define |l /{2 by J 17 (2)12 duS and

1 711% oy fﬂ |f(z)|2dpE. A sufficient condition for the
norm monotonicity is dpf < du$ almost everywhere
for z € R.

Let {¢,} be a closed system of orthogonal functions
over G,i.e.,

(d)v, ¢p)G = 55'
We have the uniformly convergent development
M(z,\) =27 ¢y(@),0),

We choose now M, (z, ) to be in L, (G); we can write
therefore

M, (2,2) =k>30 a,(0)64(2).

(3. 46)

z,x € G. (3. 47)

(3. 48)

Exchanging the order of integration by means of
Fubini theorem, we minimize first

[ 1Mz, 0 = 1, (2, 0) 12dp (3. 49)

for a given A € R. By a classical theorem, the
minimum is obtained for the Fourier coefficient:

a,() = (M(z,1), §,(2))g = ,(0). (3.50)
Therefore
5= L o= 3 lo,wi2)
= [ apr $ lo, 0012, (3.51)
R k=n+1

We turn now to the problem of finding the best set
{¢,}. Since

n
J, = fR ApE M, ) — kZ_JO le,lz, (3. 52)
we have to maximize the sum. Indeed fR dpf M(n, ))
is dependent only upon the choice, already made of
G, R, dp§, dpf. If we want that for each value of # the
approximate solution be optimal, we must minimize
J, sequentially, i.e., find ¢, such that

(¢,, &) = 07,
max|l¢,l2 = 1/k,.

n=p (3.53)

and
(3. 54)
This is precisely problem P3 and therefore the best
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set {¢,} is the unique set of functions simultaneously
ovthogonal over G and R.
The explicit expressions for the reproducing kernels

associated with L,(G) and L,(R) can be written
down10;

Moz, 0) =2 6,05, (3. 55)

Mg(2,2) =23 ¢, (@)6s Wy, (3. 56)
from which we obtain

J, = il k_ly< . 3. 57)

We conclude that the best approximate solution N, (¢)
is obtained for M,(z, ) which is the partial repro-
ducing kernel associated with a given domain G, a
measure dp€ and the unique set of orthogonal func-
tions over G and R, with their respective metric.

Two remarks are in order.
(1) The measure duf is only roughly known, if at all.

(2) It is difficult to evaluate doubly orthogonal func-
tions. Moreover ¢,(H) cannot be easily evaluated for
numerical purposes unless ¢, is a polynomial. How-
ever, except for special forms of duf, the ¢, will not
be polynomials.

Obviously a simplification is needed, at the expense
of the condition of optimality we have derived. If G
is “close” to R, as well as dp® is “close” to du§,a
set of orthogonal polynomials over G, will be
“almost” orthogonal over R. The departure from
optimality is a function, albeit unknown to us, of the
closeness of the domains and their associated mea-
sure. This departure must be tempered anyway by
the fact that dpf may be grossly inaccurate. We sub-

mit therefore that the best approximation M, (z, {) be
constructed in the following way:

(a) Select a bounded domain G O R;

(b) Select duS close to dp® and construct {¢, (2)} as
the unique set of orthogonal polynomials associated
to dug.

The important fact is that, although M, (z, {) may not
be strictly optimal, it is still a partial reproducing
kernel and its uniform convergence to M(z, {) en-
sures that N (¢) converges to N(?).

It is not allowed to let G — R with dp§ — dp&, other-
wise ky = 1 and J, — %, Although the preceding
analysis is limited to Bergman kernels it is easy to
see that is also valid for Szegd kernels. Moreover
in some particular cases to be examined in the fol-
lowing paper, there are polynomials which are ortho-
gonal not only over a pair G, R but over a family of
domains, of which G,R are samples.

We return now to the case of a compact and normal
operator, and let us assume that eigenvalues A, are
known. We write therefore

dpk = Zk) lo, 1260 — A )dw,. (3.58)

Let us select G arbitrary as long as R € G and du$ =
aduf, a > 1.

The common set of orthogonal functions for G and R
is a set of finite orthogonal polynomials{p ;(\)}. The



THE REPRODUCING KERNEL METHOD. I

orthogonality relation is

7

12:1 lo,12p ()P, 0;) = 62, (3. 59)
Obviously

P =@, = al/zy (), &k =o > 1.
We shall prove that

M*(\ , 1) =10, 12M (0, x) = 6f. (3.60)

Although this is easily proved for real 1, by means

of the Darboux—Christoffel relation for finite ortho-
gonal polynomials, it is not any more possible to use
this relation for complex X ,. We obtain from (3. 59)
and (3. 60)

il [M* (o, 0 )12 + EI lil | M*, 0,012 =0, (3.61)
l= m* =

Moreover

iﬂﬁmﬁﬂzi ibﬁWﬁﬁP:m (3.62)
1=1 =1 s=1

Therefore the M*(r, 2;) satisfy the relations

n
20 IM*( 1) 12 =n,
[=1

1259
7

20 M*(,\) =n. (3.863)
=1

The only positive values which satisfy (3. 63) are
M*(x,,1,) =1 and therefore, by (3. 61),

M*(0 g, ),) = 6 (3.64)
Therefore
N0 = 5 0w, [ e T, X s
> (3. 65)

= E Ok ll/ke)‘k‘,
k-1
which is of course the expected result. This shows,
incidentally, the connection between the reproducing
kernel method and the conjugate gradient methodl1!
which will be examined with more details in the fol-
lowing paper.
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The explicit solution of the Cauchy problem gN/3¢t = HN by means of reproducing kernels is obtained under
various forms: conformal mapping expansions, Sheffer polynomial expansion, polynomials orthogonal on a
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We have shown in Paper I! how the reproducing
kernel in a given Hilbert space of square integrable
analytic functions could be used to solve abstract
Cauchy problems aN/3t = HN, Many practical prob-
lems remain to be solved before using Eq. (I. 3. 16)
[Paper I, Eq. (3. 16)] for instance. We show first in
Secs. 1A—1C how various scattered results of Szeg6
and Walsh can be used to generate polynomials ortho-
gonal in the complex plane. Of central importance is
the conformal mapping function of a domain G con-
taining the operator's spectrum upon the unit circle.
This mapping function allows to use the Sheffer poly-
nomial representation, which gives an explicit solu-
tion of the Cauchy problem (Sec. 2A). The use of
polynomials orthogonal on a family C, allows simi-
larly explicit solution for the case where C, is an
ellipse or a parabola. Our principal results are
summarized in Eqgs. (2. 38), (2. 39) and Eqs. (2. 56),
(2.57). The case .of a real interval is examined in
Sec. 2C and Sec. 2D. Finally, the convergence is stu-
died briefly in Sec. 3. Although unrelated to the ab-
stract Cauchy problem under examination, we show

in the Appendix some connections between the pro-
posed method of reproducing kernels and the conju-
gate gradient method of Hestenes and Stiefel.?2

1. CONSTRUCTION OF ORTHOGONAL FUNCTIONS

A. Construction of Orthogonal Functions on G', from
a Set Orthogonal on G

The method of construction of orthogonal functions on
a domain G or a curve C can be found in many text-
books (see, for instance, Refs. 3, 4).

Once orthogonal functions have been built for a given
domain G, it is easy to build orthogonal functions for
a domain G’ if the conformal representation of G’
upon G is known,

For instance, let {¢,(z)} be a complete orthogonal
system on a bounded, simply connected domain G, i.e.,
(¢, 9,) = fc¢u(z)?ﬁp(z)dwz = oy with dw, = dxdy.

Let z = g(u) be the conformal representation of a
bounded simply connected domain G’ on G. We
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orthogonality relation is

7

12:1 lo,12p ()P, 0;) = 62, (3. 59)
Obviously

P =@, = al/zy (), &k =o > 1.
We shall prove that

M*(\ , 1) =10, 12M (0, x) = 6f. (3.60)

Although this is easily proved for real 1, by means

of the Darboux—Christoffel relation for finite ortho-
gonal polynomials, it is not any more possible to use
this relation for complex X ,. We obtain from (3. 59)
and (3. 60)

il [M* (o, 0 )12 + EI lil | M*, 0,012 =0, (3.61)
l= m* =

Moreover

iﬂﬁmﬁﬂzi ibﬁWﬁﬁP:m (3.62)
1=1 =1 s=1

Therefore the M*(r, 2;) satisfy the relations

n
20 IM*( 1) 12 =n,
[=1
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7

20 M*(,\) =n. (3.863)
=1

The only positive values which satisfy (3. 63) are
M*(x,,1,) =1 and therefore, by (3. 61),

M*(0 g, ),) = 6 (3.64)
Therefore
N0 = 5 0w, [ e T, X s
> (3. 65)

= E Ok ll/ke)‘k‘,
k-1
which is of course the expected result. This shows,
incidentally, the connection between the reproducing
kernel method and the conjugate gradient methodl1!
which will be examined with more details in the fol-
lowing paper.
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assume that g(u) and its inverse function %(z) are
univalent, The functions ¢, (g(u))g’(z) form a com-
plete orthogonal system in G’

Indeed
fG,¢u( glu))g' ()¢, (g(w))g’ (w)du,

— dg?
= [Lo0@8,@)| | d,

= J,8.(2)8,(2)duw, = 0. 1.1)
Similarly the functions ¢,(g(«))g’1/2(x) form a com-
plete orthonormal system on the boundary C’ of G if
{#,(2)} form a complete orthonormal system on the
boundary C of G.

Indeed
[, 8,(80u)g"/2(0) 3, (gu))g™/2 () | du|

a4,
= [, 808, -la

= [,8,()8,(2)|dz| = 5. (1.2)
If the original set is orthogonal with respect to a
weight function w(z), the new one (in G’) is associated
with a weight function uf{g(x)]. For instance let

z = g(u) be the conformal representation of G’ upon
the unit circle, which is the only one which is general-
ly known explicitly, if at all. Since

{¢,(2)} ={J(v + 1)/7-zv} isanorthogonal setinG the

set {V(v + 1)/mg¥ (u)g'(u)} is orthogonal in G’ with
weight function unity.

Similarly, (1/v27) g¥(u)'1/2 g’ 1/2(u) is orthogonal on the
boundary C’ of G with weight function unity.

B. A Problem of Szegit: Polynomials Orthogonal on
a Family of Curves

The following problem has been defined and solved
by Szegb.5

To determine all Jordan curves C and all analytic
functions D(z) regular and nonvanishing outside C,

z = @ inclusive, possessing the following property.
Let C, be a level curve in the conformal mapping of
the region exterior to C into the region exterior to
the circle |w| = 7,, the two points at infinity corres-
ponding to each other. The orthogonal polynomials
po(2),p,(2),...,associated with C, and with the
weight function |D(z)|2 are independent of v for

r > 7,y. In other words it is required that

Jo 1D()120(2)p,() | dz| = 0,

v

k=1, 7>,

There are five categories
1. C: v >0,
D(z) =1,
The polynomials are p,(z) = z* (unnormalized).
2. C: lzl=7, 7r>1,
D(z) =1/(1 —z™);

The polynomials are

lz] =7,

b e) =2z% 0=k <m,

pr(2)=z2kn(2n—1), k= n.
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3. C,: confocal ellipses with foci +1
D(z) = [z(1 — 1/w)]*[3(1 + 1/w)]8,

2z=w+ 1w, lwi=7r=1

1
a=f=3

the polynomials are
P (2) = (wk1 — w D)/ (i — w1).

If we let w = ¢i® 2z = cosé, p, (z) = (sin(k + 1)8/sinb)
= U, (cos6) = U(z), which are Tchebycheff poly-
nomials of the second kind with

ID(2)12 = 4 sing = V1 — 22,

4, Same as 3 with

— 1 —_ 1
a=73,=—73,

|D(2)|2 = tan0/2,  p,(2) = [sin(k + 3)6]/sin6/2

= Uzk_,l(COSG/Z) = U2k+1(v (1 + Z)/Z), Y = 1
= (wh*1/2 — o~ (W1/2)) /(y1/2 — wl/2), oy >1,
5. Same as 3 with o = g=— 3,
2 2
ID(2)|2 = 2 = 2 _
sing v1—2z2’

Pfz) = coskd = T,(cosb) = T,(z), r=1
= 3(wk+wk), r>1,
i.e., Tchebycheff polynomials of the first kind.

All three polynomials are in fact Jacobi polynomials
(See Ref. 5, p. 59).

C. Polynomials Orthogonal on a Family C, and in a
Domain G

Under which conditions polynomials orthogonal on

the boundary C of G are also orthogonal in G?

Let u = u(z) be the conformal representation of the
interior of G upon the interior of the annulus G’:
1 < u < p. We have the following equalities (Walsh§)

S, A, pR)asw)
= [lar [, _, Ale)p(z()p, () | dul

= Jjar] A(Z)lﬁbp (2)p,(z) |d|
=) bec, dz Ik 1 ’

where C, is the equipotential curve such that if
z€Cy luz)l =7, 1 <7< p(seeFig.1) and A(z) a
positive function,

We have also

(1.3)

du)?
S A@p 5|5 d2@) = [, AR,
(1.4)
Accordingly, polynomials p,(z) are orthogonal in G
relatively to the weight function A(z)|du/dz12 when

u Z

—___

Z

.

N\
°
\
0

N
(.
<

W
\\\\\

/

FIG. 1.
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they are orthogonal, on every line C,,1 =7 =p,
relatively to the weight function A z) | du/dz!.

We state this property in the following way: If u = u(z)
is the conformal representation of G on the annulus
G":1 = |u| = pand if {$,(2)} is an orthogonal poly-
nomial system on every C,:1 = v = p relatively to
the weight function ID(z)I2 then {p,(z)} is orthogonal
in G relatively to the weight function |D(z)|2 |du/dz].

The reciprocal is true.

We are led back to the problem of finding polynomi-
als orthogonal on a family of curves. If the normal-

ization is such that fG,A(z) ka(z) {2dS = 1, and if
Fir) = [, . 4) | %] Ip2)12 4z

then 0
fl F(r)dr = 1.

(1.5)

This method allows (under circumstances described
in Sec. 1C) to reduce the integration to one on par-
ticular curve of the family (for instance a segment
of the real axis) where it is easily performed.

2. EXPLICIT SOLUTIONS OF A CAUCHY PROBLEM

A. Use of the Conformal Representation of a Domain
G’ upon the Unit Circle

The evaluation of the mth order approximation to the
Cauchy problem

5T—HN

is given by Eq. (1. 3. 18),

N(t) = [, et M(E,HIN(0)dE

with du, = |dgl, M being the Szegd kernel associated
with the boundary C’ of G. Let z = y(£) be the map-
ping function of G’ upon the unit circle. Therefore,

1 & .75
N == 2 T2
o ovE
x [y v (H)W' Y 2(H)N(0)et? |dg].
In order to evaluate the integral of (2. 1) we may
introduce the Sheffer polynomial representation which
is a particular case of the generalized Appell poly-
nomial representation introduced by Boas and Buck.?
Let ©
AWetsW = Z)O Yrp, (1),
n=

(3.1) of I

2.1)

(2.2)

where ¥ and ¢ are complex variables. Let A(}) and
£{) have the following Taylor expansion,

AW) = f‘?o a, v, a0, (2.3)
gl = Zzilg,,z//", g %0, (2.4)

We assume that A(y) and g(i}) are regular for ¢ € G
and that g(y) is also univalent in the same domain.

Then, as shown by Boas and Buck, (2. 2) is convergent
for ¥ inside the greatest open disk contained in G.
In this case G is the unit circle and (2. 2) is conver-

gent in the open disk: |¢|< 1,
The explicit representation of the polynomial p, (f) is
n
=2 Y5, 2.5)
i=0 3!
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with
(2.6)

where the summation extends over all sets of j +1
nonnegative integers % such that ky + ky +---+ k&, =n.

Since g(z) is regular, g’(z) is also regular and g'(z) =
0 since the derivative of an univalent function doesnot
vanish, Therefore if we choose A(z) = g'1/2(z) with
the positive branch, A(z) is regular if |z| < |,and
1/A(z) is bounded in the same domain. Let £ = g(z) =
g (€)) be the inverse mapping function of G’ upon G;
we can for simplicity choose { = 0 to correspond to

z = 0, Therefore

. :'E akogklgkz ...g;aj,

ts = el = 3 YrOY 2B, (2.7)
Substituting (2. 7) i:x—t(; (2.1), we obtain
N(t) = Z)O nEo” Ny (HM'W(H)N(O)]

X fC,’J/“(CN«'1/2(§)1P"(C)\U’1/2(C)Idcl, (2.8)

i.e., because of (2.2),

N(t) = ép,,(t)[w (H) '1/2(H)N(0)]. (2.9)
If g(0) = 0, -

N(t)= et€(® 35 p(O[y» (HW'/2(H)NO)]. (2.10)
Let us select as ;rzloexample z=y(€) = (at + b)/

(¢t + d), the conformal representation of a circle G’
upon the unit circle G. We have

ay A :
;1? =(Cc—-—:—d—)—zW1thA:ad——bC.
Therefore
¢ =gt =¥ " anaaw) - (dg>1/2 ya
=g = an = .
v &, eV 11

We have the following identities:

_ VA (e A {c\»
a, —7 <—5> y &, —E (—5> (2.12)

with P(n, j) = (;‘) (2. 14)
Therefore N JA
p,(1) = E{) i <E> P(n,])< ) —, (2.15)
i.e.,
Ny =2 o ;’;()[( —> <H +%>'('"“ N(O)]
xL,,(—aAc) (2.16)
or
N(t)——‘—l—éea Z)AL <’EAE> (2.17)

where L,(x) is the Laguerre polynomial of order
zero and
= (H + b/ay*(H + d/c) »*1) N(0) (2.18)
i.e.,
(H+d/c)A, = (H+b/a)A, 4,

(H + d/c)Ay = N(O).  (2.19)
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It would have been easier, of course, to use the generat-

ing function for the Laguerre polynomials
oo
Q- ¢)—(1+>\) etWv-1) = Eo Lg”(t)zp", LSLO)(t) = Ln(t);
n=
(2. 20)

but we have given this example to show all details of
calculation by the general method.

If ¢c— 0,we have

n [ﬂ
N(l) = e-(b/adt i <H + %) N(0) Mk

n=0

(2.21)

which is the Neuman series solution of the Cauchy
problem.

The use of (2.17) and the study of its convergence, as
well as the choice of /a and d/c have been done pre-
viously.8

B. Use of Polynomials Orthogonal on a Family C,

Let us use the solution (1. 3. 16) with a Bergman
kernel associated with

du, = w(z)dZ(z) (2.22)

where w(z) is a positive function

We furnish the domain G with a slit which obviously
does not affect (I. 3. 16) because it is of zero measure.
However, this is necessary if we wish to use the con-
formal mapping of G (with a slit) on the annulus G”.
With the notation of Fig.1,

O w(Z)M(z,H)N(O)e“d 2(z)

J o w(@ Mz, HIN(O) et

}ds

— P ) 5 zt |Bs
= [yar |, , wlee = Ydul. (2.23)

' * M, H)NO

We expand M(z, £) in terms of complete set of poly-
nomials P, (z) orthonormal in G relativity to the
weight function w(z), i.e.,

J P (2)P, (@hw(2)dZ(z) = 7. (2.24)

Let us assume also that the polynomials B,(z) are
also orthogonal on every line C, defined in Sec. 1C,
Then
e p
Nty = 2 P(H)NO) [, ar L.
n=0

w(z)e”

—‘P z)|dz].
(2. 25)

Since e# is L,(G) for a given {, z € G, the develop-
ment

ot = fi‘o £,(0P,(2)

is uniformly convergent. The evaluation of f,({) may
however not be easy.

We define
: == |4z _
jzcc,r ethn(z)(a‘w(z)Idzl =f(r 0

(2.26)

(2.27)

and

F0 = [, wo)|E B @ ). @.29)

»
The normalization (2. 24) gives _fl E,(r)dr = 1. Sub-
stitution of (2. 26) into (2. 27) gives £, (7, {) = f,()F, ()
and substitution into (2. 25) gives
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N(i) = iZPn(H)N(O)];(t) S E ar

ip ENOY (). (2.29)

Therefore,

L) = szCT eZtﬁn(—z)’d—Z'w(z)ldzl/

[P, ( z)lzl—lw(z) ldz]. (2.30)

<), <

G
Since f,(f} is independent of 7, otherwise the develop-
ment (2. 26) of ¢?¢ would not be unique, we can evaluate
(2. 30) on a particular line C,, where the integrations
are easy to perform.

Example 1: G is the interior of an ellipse with
real foci,

Let us assume that the spectrum of H lies in an
ellipse G whose fociare—X; and —2, (real numbers,
with H either a bounded self-adjoint operator or a
normal compact operator (See I, Sec. 3B). As a par-
ticular case we have of course the real interval
(—xqy,—Ay). Let

u=(Zz +A1 +)\2)/()\2_')\1)’ T=[(7\2—A1)_/2]i
and therefore zt = ur —[ (A, + 2,)/(x,
ever z € [— 2y, — 2,), u e [—1,1].
We shall use an expansion formula given by Erdelyi,?
& (&) 1
qb(a, ¢, “T) = E
n=0 (g + 7[) nl
X ¢pla+n,g+2n+1,71),

— A;)]7 when-

ZFl( ,g+n,c,u)

(2.31)

where g is an arbitrary real number, and ¢ the con-
fluent hypergeometric function,

Since ¢(a, a, ut) = e¥7, we obtain after some transfor-
mations

® T'n+ta+p+1)
n:6 rn+a+p+1)

enr = Pl.B) (1 — 2u)(— 7)"

n

Xxpn+ta+,2n+ta+p +2,7), (2.32)

where @ =a — 1 and 8§ =g — a are arbitrary real
numbers (&,8 > — 1) and P("‘ ) (1 — 2u) is a Jacobi
polynomial. We let C, be the ellipses confocal with
(—1,1) inthe u plane.
We have €47 = eTe 27"/ 2 and
® +a+p+
it — ot 5 T'n+a+3+1)
=0 T(2n+a + 8 +1)
X ¢on+a+1,2n+a+p+2—27).

BB (u)(27)

(2.33)
The normalization is given by

SRR 21 —we (1 + u)® du = ki

_ Tn+a+1)Tr+p+1) 20841

a r2n +ao + 3 +2)

(2.34)
n+a+p8+1

and
Pn(ot ,B) (u)

,/h’(za,lﬁ

We can choose as level line C,, the segment (—~1,1)
and we have necessarily o, =+ 1, in order to have

B,(u) =
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orthogonality on every ellipse C,, with foci (- 1, 1),
by virtue of Sec. 1C,

Consequently,

X Tn+at+tp+1)

2=0 TR +a +8+1)
xpn+a+1,2n+a+8+2,0; —2)0)
X [0 — 2) "B ( - 2 — * 11 * ﬂ N(0).

2 — M 2~ M (2. 35)

Using Kummer equation ¢{q, c, x) = e*¢(c — a, ¢, — x),
we have the alternate representation
© Tn+a+tp+1l)

Aot
N1) = e nzjor(zn+a+5+1)

N(t) = ™t

xpn+p+1,2rn+a+p+2 0 —2aq))

2H A F X
+ 1 "2\N0).
Mg — A Ag N
(2.35")
It must be recalled that the best choice for a, 8
should be dictated by the best approximation of
[1 — z|® |1 + u| to the “eigenvalue distribution”, as
described in Sec, 3B3 (Paper I). We can now give the
explicit forms to the solution for @, 8 = + 1.

X [(xg — )‘1)t]”Pn(a'ﬂ)<

From

I(x) = <i><i> cron+ L, 2+ 1,2%),
2/\n!
the modified Bessel function of the first kind

nl2 /o
T,(x) = @l 22n p(-1/2,-1/2) (x),

the Tchebycheff polynomial of the first kind

(n+1)12

U, () = ———
(2n + 1)!
the Tchebycheff polynomial of the second kind,

2H A+ A
+ 22 2>N<0>

22n+1 pn(1/2,1/2) (x),

we obtain

Ny=2 5 Tn<
n=0

2_)\1 RZ_AI

Ay — A
N (2. 36)
o oH A R A
N = B Uﬂ( + 2 7 M\ o)
n=0 }\2 - }‘1 )‘2 — A
LU0 2 0 sy
(n + 1)t C (2.37)

The mixed case does not involve particular special
functions. Although formulas (2. 35) or (2. 35') are
valid for a, 8 = + 3 when G is an ellipse, they are
valid for all values of « and 8 when spectrum is real
and contained in the interval (— 1, 1) because Jacobi
polynomials are orthogonal on this interval. The
problem of the validity of (2. 35) outside (— 1, 1) for
arbitrary values of @ and § will be examined later.

The important point that should be stressed is that
(2. 35) yields a practical algorithm because of the

recurrence relation for the orthogonal polynomials
Pn(“»ﬂ)(z). Although there is no general recurrence
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relation available for orthogonal polynomials in the
complex plane,we can use, of course, the recurrence
relation for the classical orthogonal polynomials
when they happen to be also orthogonal in a complex
domain,

In this case,
w T'n+ta+p+1)
e O 4 Ao — AL )2
Nt = e ™ nz:;ol"(2n+oz+ﬁ+1)[(2 1]
Xpn+a+1,2n+a+p+2 (0 —23)04,
(2.38)

with
Crn+ao+3+1)2n+a +8)
. 2n(n + a + 8)
2 Ay A
><< g 2>An—1
g — Ny Ay — N
@n+a+pB—1) a2 —p2)
2un + o +B)2n +a + B —2)
m+a —1)n+8+1)2n+ a + )

— A, 4, 121,
nln +a+8)2r+a+p3~—2)

An -1

Ag=N0O), A =3(@+8-2)

2 A A .
x H+ (0) + z(a —B)N(0).
Ay — Ay Ay — A,

The fact that the A, can be generated recursively is
of great importance as well as the fact that N(f) can
be evaluated numerically for definite values of { with-
out the usual necessity of taking small time steps to
evaluate N(t) for all previous values of {.

It should be remarked that the confluent hypergeo-
metric function can itself be computed by means of
a recurrence relation although it may not be the best
method from the point of view of roundoff.1¢

It might be suggested by (2. 31) that Eq. (2. 35) has a
general validity independently of the value of «, 8.

This can be easily shown by means of the classical
expansion formulall;

1 2 (e 8)(3)Q (. B)
—_— = (g +1)8(q — 1)*B(*8Xu)@,;*-8Xq)
q—u 7=0 hn(a’s) (2 40)

valid for a, 8 > — 1, where u lies inside and ¢ outside
an ellipse with foci at + 1.

From
2(q + 1)8(q — 1)* QP (q)

1 P(a.B)(s)
= — g ___
f_l(l el +5)f 2 —rds,  (2.41)
we obtain
1 x 1
=y, c
q—u n=0 hno"B)
1 (1 — s)x(1 + 5)8ple.BY )P sB)y)ds
xf( s)e( VEp B )P (B u)ds (2. 42)
_1 q_s
We define
2z + Ay T2y 20+ 2 T2y
U= ——"r——=, §=——
Ao — Ny Ay — Xy
20+ + A
g=——>t "2 (2.43)
Ag — N
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Therefore
1 1 2 o+Brl f—xl (A + D), + 0)B
b—2z n=0 h, [A;— X Ay p—v

x Pn<q,s><_2£“_"1_f_"2> P (a,m(m v
Ap — N
(2.44)

is an expansion valid for p outside, and z inside an
ellipse of foci (A4, ;) which yields after integrating
on a Bromwich contour enclosing the ellipse

20(*3*1 0 1 A
e“=-—-—j; D Nt L D WL
()\1 — 7\2)"” 1 40 hn Ay

20— Ay, — X 2z — 2y — A
% e-vtp"(a,ﬂ) <__A__1./\__2_> pn(a,ﬁ)< - 1/\ 2) dv
17 2 17 2
(2. 45)

valid for z in an ellipse with foci at (— Ay, — ;).
Using the reproducing property for the analytic func-

20— 2 — A
tion Ple.® 1“2} ¢ 1,(G), we obtain finally,
M=y
after substitution of (2, 45) into (2. 23),
A a+p+l o gt
N(t) = f : 2 (A —v)*(v — )\2)6

h2 (A, —Ag)®*B'l a0

X P8) (i”_“_x_l;_M) PGB (E{I;ll;“_z) N(O)d.
A =2y A — Ay
(2. 46)

We have therefore an alternate description of (I. 3. 34)
and it can be shown by means of the integral repre-
sentation of the hypergeometric function that they are
fully equivalent, Although (2. 46) is valid for values
of @, 8 > — 1, we have lost one important property:
When the development is truncated, it is no more
optimum in the sense of Sec.3. Therefore the con-
vergent properties may be affected and the accuracy
may be lower,

Example 2: The ellipse of Example 1 degenerates
into a parabola.

It does not mean, however, that the spectrum of H
fills the parabola: Assumptions of example 1 are
unchanged. We take the limit of (2. 46) for x, — :
The ellipse degenerates into a parabola.

1 Qo+l

. 'xl
N = i, [, 5T (/2 — 1)erBl

v B
x Ay — v)“()\— — 1) e

2

1 [2v—2)/2]—1
— pla.B) (o, 8)
X};/ nPn B< Al/(kz_‘l) >P’l :

y <[(2H + a0+ 1> NO)do.
(1 —2)2

(2. 47)

Let us take B/x, = 7. If B < 0, the limit of N(f) is
undefined. We shall assume that 8 & © with y a fixed
positive number,

Since
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) Tz + a)
lim [————— — z°‘]= 0, (2. 48)
. 2wl Tz +1)

lim = arl 2,49

B o0 Agrlhn r(n +a + 1) 4 ( )
we have also

gim PeB)[1 — (2x/p)] = LE{*)(x). (2. 50)
Therefore
lim Pn(a,s)<1 —1@v- Al)y/m) P8
B oo 1—(/8) /7

5 (1 +[(2H + A1)7/3]>
1—(\7/8)

= L((v — 2 )y L (—H + 23 1) (2.51)

and
[(v/2y)—1]°
= (— 1)o*l gy(r,-2), .

SIS i
Since ) Cmvyot

M (V) E et A
N = [, gyg%%(ﬁ) 1) e

><1"(1’t+1)(2n+oz-\‘-ﬂ+1)
Tn+a+1l)n+p+1)e
X (g — 0)° LN (v — 0 ) LY@ + 2, )1y)Nao,

(2.53)
+n + -
J7 se L) s)epsds = Te+n +1)(p—1e
0 Tn+1) porrl
Rea > —1,Rep > 0, (2.54)

we have

o0 tn
N(O) = yet eyt )

Z WL},“)(— y(H + 2))N(0),

(2. 55)

which be obtained also formally from the generating
function for Laguerre polynomials. The recurrence
relations are given by

[«o] tn
N(t) = yo*tle M 2 ——
n=0 (¢ + y)rtotl
(n+1)A,,, =@2n+a+ 1A, +yH+)A,
—(m+a)d,, n=l,
Ay =(a+ 1A, +yH +2)A,,
Ay = NO).

It should be remarked that if the order of truncation
is fixed beforehand, the sum (2. 55) may be evaluated
“in reverse” by a nested procedure, which is stable
for roundoff.19

Ay (2. 56)

(2.57)

C. Finite Orthogonal Polynomials on a Real
Interval C

When the operator is bounded and Hermitian, with its
spectrum on a finite segment R{m, M) of the real
axis, we can write the resolvent operator, using
(1.2.18) and (1.3.18 )

6,(2)

R, =2 o,) [ 57— aus, p¢G, (2.58)
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where G is a bounded domain with the real interval
R(m, M) in its interior. As shown in Sec.3B3 (Paper

I), if the operator is compact,
dul = 25 10,126(x — 1) dw,, (I. 3.58)
k
we may select G O R and choose du§ as close as
possible to dpuf. We shall therefore write for the

approximate resolvent operator in this case, Eq.
(2. 58) with

M=

aus = o, 8(z — a,)|dzl, (2.59)

a
n

1

where we have substituted the one-dimensional mea-
sure, (2 — a,) being the usual Dirac function [and

not the two-dimensional definition as in (I. 3. 58)]. The
a, are approximations of the A, and the «, of the
Ioklz However, in general, we shall erte

)
dy.,,

R =3 3, | ‘P (2. 60)

where dp., is a one- d1mens1onal measure approximat-
ing duR = (N, d §,N) (see I. 3. 33) and where the in-
tegral is a line 1ntegra1 along the real segment R.

If we define the moments c, JR ztdy, and p,, th
kth zero of the orthogonal polynom1als 6, (2) assoc1-
ated with du,, i.e., [ & (2)3, (2)dy, = 67, we have

from the general theory of orthogonal polynomialst?:

B p—z Nt (C 01—02)1/2 SMp)
= lim 2

N7 k=1 P_pkN .
However, for the particular choice du, =

of orthogonal polynomials isfiniteanda,=
where B,y are the Christoffel numbers.

du€,the set
BkN’ a,=Puy

The orthogonality relation is
N
k_El 08, @)$,(a) = 0f- (2. 61)

A second “orthogonality” relation derived from the
Christoffel-Darboux equation

N ~ -~ k A+ ZA ( )-‘A+(P)$N(p)
_Z} (Pl(z)(ﬁ,(P) - N ¢N 1( )¢N P ¢N1
- kv Z2—p 2. 62)
gives
N o}
Z) J(a,)d,(a) = (2. 63)
Bm

which is a finite closure relation.

Obviously, only the numbers ¢,(a,), i =0,1,2,..., N,

k=1,2,...,Nare needed to evaluate (2.58). They
are obtained from the three-term recurrence
an (ak) = (Anak + Bn)$n—1(ak) - Cn an-z(ak)’ (2' 64)
and the orthogonality relation (2. 61) yields

B N -

Xn = Z—}l @,a,¢2 4(ay),

n
Cn . (a,) 2. 65)
-A—:—“Eaak(p-l(a) n-2\qp)s (2.

£
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1 N BN\ .
Y = ?1 Qpd, ’:(ak + A ¢n-1(ay)
n ; n

c, . .
= ¢n~2<akﬂ Bralay).

n

Since ¢y(a,) = 0, the recurrence stops at v = N.
Consequently, we obtain from (2, 60)

py(p) .
R,(H)N(0) = Z) , ( Sp) —— — u(p)> (2. 66)
(H)N(0) ,(H)N(0)| ¢ 30(p) p
with N -~
OB @60
p—z
and
— fep H)N(0)dp
2m4 - -
N N akt<¢"(ak)pN(ak))
= UZJO ¢,(H)N0) ? e 34 (@,)
- (H)N(O) T B,y ¥ $,(%) (2.68)
v=0 k
because
buley) it 9GO Gla)_ g 69)
oyla,) "€ z—a oy la,)

Equation (2, 68) is nothing but the result of a Gaussian
quadrature, as could be foreseen.

In case the {a,} = {a, ..., ay} is the spectrum of the
Hermitian matrix H, the orthogonality relation gives
the expected result,

N(t) = Eow, '23 E
= ZEOI%el ,

é,(a) 8,(a,)8,ye" k!t

(2.70)
where

Hll/l = ald/l and 01 = (Il/p N(O))-

D. General Procedure for Real Intervals

The procedure to be followed in the case of a real
spectrum is stated below.

1. Evaluate the gross behavior of the solution (say,
exponential decay with a constant approximately
known).

2. Select a nondecreasing function p(z) such that
f e# du, approximates as closely as possible the
gross behavior of the solution.

3. (a) If p(z) is continuous, and is the weight function
of a classical orthogonal polynomial, the 8, and ¢,
are known and tabulated. Therefore we choose an
origin and a scale such that the greatest ¢,,i.e., q;
which commands the asymptotic behavior, approxi-
mates as closely as possible the greatest eigenvalue.
However, the others ¢, cannot in general coincide,

not even approximately, with the eigenvalues. This is
a disadvantage not shared by other methods (see

Sec. 3B2, 3B3, Paper I). However a notable advantage
is that Eq (2. 68) can be written at once, the ¢, (a,)
being computed by recurrence by means of (2. 64) the
B.xy = o, and a, being known in advance. However
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the order N of approximation must be fixed before-
hand and if N is changed the whole work must be
done again, a disadvantage not shared by other
methods (see Sec.3B3, Paper I and Sec.1).

(b) I u(z) is continuous, and is not the weight func-
tion of a classical orthogonal polynomial two different
courses are open,

We proceed as in 3a) with the added difficulty that

a, and a, are not known in advance. The polynomials
¢,(2) are generated by the customary recurrence
relation and ¢, and g, are obtained by their definition,
Unless the work can be done once for all, this is not

a practical method, because we have all the disadvant-
ages of 3a) with none of its advantages.

We disregard the rational approximation (2. 58) and
use a quadrature formula for

N(t) = 23 &, (H)N() fR et 3 (2)du,

with prescribed abcissas. We loose accuracy by
comparison to 3a) since the quadrature formula is no
more Gaussian and will be correct to order N in-
stead of 2N-1, The polynomials are generated by the
customary recurrence relation. Any improvement
of the accuracy needs a fresh start, However we can
select the @, at will as close as possible to the point
spectrum of H,

(c) ¥ du, = 23,0,6(z — a,)|dz| which means that

@, = B,y and a, are given, we can proceed as in 3a)
with one added advantage—each intermediate step is
optimum,

4, X p(z) is continuous and is (or is not) the weight
function of an orthogonal polynomial, it may be pos-
sible in some cases to evaluate fc e# g?)u(z)duz ana-
Iytically. It is therefore unnecessary to use the
rational approximation. This is the case studied in
Sec. 2B. :

3. CONVERGENCE OF THE SOLUTION

We known from (I. 3. 41) and (I. 3. 42) that for a
Bergman kernel,

1N — N, ()l12 = [ e2tRendpS [ dp¢

x [, IM(z,3) —M,(z, V) |2duk.  (3.1)

It can be easily shown that a similar expression is
obtained for Szegd kernel, where C is an analytic
curve, boundary of the bounded domain G,

IN(t) — N, ()12 = [ e#Rendn [ dug
Xleﬂ;}(z,)\)_MAn(z,}\)‘Zdu{l_ »(3.2)

A general expression has been found'2 for theasymp-
totic expression of M{z,A) — M, (2,2) but it is not
valid for Bergman kernels, Let us examine the par-
ticular choice of Sec.1.1:

$,(2) = [(2)]*h'1/2(2)(1/¥27) 3.3)

with duS = {dz|,and h(z) the mapping function of G
upon the unit circle,

Since
4, = Jg |d2|fR |M(2, ) — M, (2, 1) |2dp,
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we have

O

: 1
= h)2v ()] — R,
b= Ly B W )] — dyf
and
IND — R, ()12 = [, eatvenape

(3.4)

RO 126D () | dpk
<k 1— 02 2r @8.5)

Since by assumption every point of R is at some posi-
tive distance from C, |k(2})} <1, X € R, and the de-
gree of approximation is geometric. We might let C
approach the boundary of R provided the integrals

(3. 5) converge; however in this case the convergence
may be less than geometric,

For the Bergman kernel

¢,(2) = V(v + 1)/mhv(2)h’(2) (3.6)
with du¢ = dw, and
Ty = [ dw, [y 1M, 0) = M, (2,0 |2auE,  (3.7)
we have -
= fo 2 i Lt aug, 6.8)
N |h() 12620 | R/ (0) 2
ING) = H, (012 = [ e2emendud [, ——rers
X[(n+2)— (n+ DIAIZ] EE (39

It is easy to show that the error norm decreases
monotonically with #.
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APPENDIX: RELATIONS WITH THE CONJUGATE
GRADIENT METHOD

We show below the relations between the reproduc-
ing kernel formalism and the conjugate gradient
method.10,12

Although we have used the method of reproducing
kernels for solving Cauchy problems, it can be used
for equations of type

HN— k=0, (A1)
where H is a nonsingular matrix operator. Using
Bergman kernels we have

— du

N=—RyHk= 23 ¢, (Hk fG P,(2) =+ (A2)

v

However we cannot have recurrence relations for
¢,(H)k, in general, because if H is not self-adjoint, G
cannot be reduced to a real interval. Let us write
H?! = T1TH-1, where T is a given nonsingular
matrix.

Obviously,

-, . auy,
N=2, ¢ (T)TH k fG ,(2) — . (A3)
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We show now that if T has a real spectrum, the re-
currence relation will give a simple algorithm to
solve (Al), provided TH! does involve only nonnega-
tive powers of H. If we assume only first power of
H, at most

THY = C + KH*M,

T = CH + K(H*MH) (A4)

with C, K, M arbitrary nonsingular matrix operators.

We let M be Hermitian definite positive; H*MH is
also Hermitian definite positive. We select the
trivial solution C = 0 because a proper choice of K
and M includes the case where C = 0.

We define N = H* and T = KN where K is a positive
definite Hermitian operator.

However, although T is not in general self conjugate,
the spectrum of T is real.

If we write
T—M=KN—-M=KN —2AK1)=(K—N1)N, (A5)

the spectrum of T is the set of values for which

K — AN or N— AK™? has no inverse. Since N1 and
K1 are positive definite, the pencils K — AN and
N — 2Kl are regular and the spectrum is veal. We
can thus restrict G to the real axis,

We shall now write the solution as
o, (T)(KH*ME) . _  dp,
= Ao [ () —%,
v [, 8,(2)0,(2)du, 6 z

where the denominator is equal to one because of the
normalization. The spectrum being real, ¢,(z)=

¢,(2).

Let A, be the Sth eigenvalue associated with the
eigenvector |y) of T = KN,

N (A6)

Let l(ps> and |1rs) be the eigenvectors of K — AN and
N — AK"1, respectively,

(K — AN |(ps> =0, (KN-—x K1) m) = 0. (A7)
We have also
(BN —x DYy =0. (A8)

Therefore the orthogonality yields (¢,, N7 (ps> =07,
i.e.,because |g¢,) = N|y),

(ws I Nwr = 615" (AQ)
Similarly

@, K1) = o7, (A10)

Let ¥¥ be the eigenvectors of T* = (KN)* = NK, We
have

(NK =X DlgH =0, (N K| )=0. (A11)
Therefore,
ln) = Kly®, (A12)
(m, K 7)) = (KT [yr) = 67. (A13)
We define
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|go) = MH*|k),

|P0> = K|g0>;

lp,) = ¢,(T)py),

lg) = lg, 1) —a,aNIp, 1),
a, ={g,1p,)/(b, | Np,).

Up to now, u(z) has been arbitrary. We choose

p(z) = 21 02H(z — ). (A14)
We have

(p,INp,) = 6L. (A15)
Indeed,

(0,(T)p ING,(T)pyy) (A16)
can be computed if we develop

|po) = Klgo) = KMH*[R) =25 0y, (A17)

2220 3, ()¢, 0, I M) o 0, = 25 ¢, (A )9, (X )o2. (A18)

The orthogonality relation yields

203%0\3)%()\5) = o, (A19)
Therefore
(b | Np,) = 8. (A20)

The solution can be written as

N= I [0,DIpe/(p,|1N)] T 02 6,00/, (A21)
Fromy(A14) and (A20), we obtain

(p,18,) ={p,18,0) —alp,|Np, 1) =(b,l8,-1), (A22)
Therefore

(p,lg,) =<p,lgoy and a, ={p,|Kpy)/(t,INp,).

2
We evaluate (423)

2302 ¢,(0 )/
= Z) 2 Lo, ()2 Jo W | Noy)
={¢,(T) T py | Npy) = (T1¢,(T)pg | Npy)
=(p, | T *Npo) = (p,| K py)

={(p, gy =(b,lg). (A24)

The solution is therefore
N=23alp).
v

One easily recognizes the formalism of the conjugate
gradient method. We remark that it is not necessary
to know u(z),i.e., 02 and r.. Indeed the vectors |)
are generated by a three-term relation,

(A25)

1) =TiB) —a,418) —B8,lp,1). (A26)
From (A15) we have
a,q =<8 |NTp)/p, | Np),
1 BN (a27)

By = (pu—llNTg) /<2,—1 |N17l,_1>-

The finite orthogonal polynomials ¢, (z) satisfy a
three-term recurrence relation
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¢,1) =0 +08)¢,2)~az¢,z)—b,10,,(),v>0,
91(2) = (1 + bg)(2) — agzby(2). (A28)

The coefficient can be found in the following manner:

S @@, =1+, —a, [ z¢2(2)ap, =0,

i'e" @, = (1 + bu)/ (E 023 As‘p%()‘ss)) (A29)
[, 2, = —a, | 2,4 (), =1,
ie, a =— (Zs) 02X ¢, (As)q)fq(’\s))—l (A30)
a, | 2¢,(2)¢,1(2)dp, — b, =0,
G v
ie, @ =— bv_l/(zs) o2A, 4’»("3)%_1(7\5)) . (a31)

J. DEVOOGHT

Moreover we have the following equalities:

(b, INg) = 82 =9, (T)po | N9, (T,
B =0 +0b)p —a,Tp, —b,1p, 4,
(INb,1) =0=1+b, —alp|NTp,
(bya | N,y =1 =—ap,INTD,),
(B11M8,1) =0 =—alp_ INTD) — b 5,

(A32)

il

and finally
a, = - by-1/<pu+1 |NTP,,>,
1+0b,=alp,|NTp,),
a,/a,1=b,;.
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Representations of the Invariance Group for a Bloch Electron in a Magnetic Field*

M. H. Boon
Ballelle Advanced Sludies Center, 1227 Carouge-Geneva, Switzevland
(Received 7 February 1972)

The invariance translation-operator group for the Hamiltonian of an electron in a periodic electric field and a
uniform magnetic field is examined in the context of the theory of infinite-dimensional representations. It is
shown that this group is of Type I if and only if the magnetic field has rational components relative to the lattice.
The case of a nonrational field along a lattice vector direction is studied in detail. Here, the group is the direct
product of a factor involving the translations along the field and a factor expressible as a semidirect product in
a way that depends on the choice of basic lattice vector pair for the translations across the field. For each
choice, Mackey's theory of induced representations is applied to obtain an infinite set of physical irreducible
representations (based on both transitive and strictly ergodic measures); it is found that for different choices
the sets are different unless the vector pairs are related in a simple way. The representation carried by the
state space L2(R3) is decomposed into a direct integral of primary representations, using Landau functions for
a basis in L2(R3). These primary representations are not of Type I, for it is shown explicitly that each has an

infinite number of direct integral decompositions into irreducible representations, such that representations
from any two decompositions are inequivalent. Here, different decompositions involve Landau functions for
propagation along different lattice vector directions. The invariance translation-operator group for a system
with 2 uniform magnetic field only is also discussed; it is of Type I,and its physical irreducible representa-

tions are given,

I. INTRODUCTION

The invariance groups of the Hamiltonian for an
electron moving in the periodic potential of a crystal
and a uniform magnetic field have been a subject of
investigation in a series of recent papers.1~5 One of
the main results of these investigations has been to
show that the translational symmetries of the system
lead to infinite invariance groups with a very special
structure, critically dependent on the direction and
magnitude of the field relative to the orientation and
lattice parameters of the crystal. This was first
shown in the papers by Brown! and Zak.? A complete
classification of these groups in so far as transla-
tional symmetry is concerned is given in the paper
by Opechowski and Tam,4 together with a discussion
on their irreducible representations. This has been
extended to include symmetries other than trans-
lational by Tam.5 At the same time it has become
clear that the representations of these groups pos-
sess some features not usually found in applications
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to solid state physics, and it is the purpose of this
paper to try to set them in the context of mathematic-
al developments in the general theory of representa-
tions of infinite groups. In fact, it turns out that these
features can be characterized very well in terms of
some well-known mathematical results for groups
that are not of Type I, whose definition we give later.
In the process, several questions that have been rais-
ed on the properties of certain infinite-dimensional
representations of the invariance groups can be
answered. %

The system under discussion consists of a single
nonrelativistic electron without spin subject simul-
taneously to a uniform magnetic field B and an
electric potential V(r) with the periodicity of an in-
finite three-dimensional lattice; here r denotes the
position vector of the electron. The Hamiltonian is

m:-;%( —~%eéA(r))2+‘D(r), (1)
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¢,1) =0 +08)¢,2)~az¢,z)—b,10,,(),v>0,
91(2) = (1 + bg)(2) — agzby(2). (A28)

The coefficient can be found in the following manner:

S @@, =1+, —a, [ z¢2(2)ap, =0,

i'e" @, = (1 + bu)/ (E 023 As‘p%()‘ss)) (A29)
[, 2, = —a, | 2,4 (), =1,
ie, a =— (Zs) 02X ¢, (As)q)fq(’\s))—l (A30)
a, | 2¢,(2)¢,1(2)dp, — b, =0,
G v
ie, @ =— bv_l/(zs) o2A, 4’»("3)%_1(7\5)) . (a31)

J. DEVOOGHT

Moreover we have the following equalities:

(b, INg) = 82 =9, (T)po | N9, (T,
B =0 +0b)p —a,Tp, —b,1p, 4,
(INb,1) =0=1+b, —alp|NTp,
(bya | N,y =1 =—ap,INTD,),
(B11M8,1) =0 =—alp_ INTD) — b 5,

(A32)

il

and finally
a, = - by-1/<pu+1 |NTP,,>,
1+0b,=alp,|NTp,),
a,/a,1=b,;.
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The invariance translation-operator group for the Hamiltonian of an electron in a periodic electric field and a
uniform magnetic field is examined in the context of the theory of infinite-dimensional representations. It is
shown that this group is of Type I if and only if the magnetic field has rational components relative to the lattice.
The case of a nonrational field along a lattice vector direction is studied in detail. Here, the group is the direct
product of a factor involving the translations along the field and a factor expressible as a semidirect product in
a way that depends on the choice of basic lattice vector pair for the translations across the field. For each
choice, Mackey's theory of induced representations is applied to obtain an infinite set of physical irreducible
representations (based on both transitive and strictly ergodic measures); it is found that for different choices
the sets are different unless the vector pairs are related in a simple way. The representation carried by the
state space L2(R3) is decomposed into a direct integral of primary representations, using Landau functions for
a basis in L2(R3). These primary representations are not of Type I, for it is shown explicitly that each has an

infinite number of direct integral decompositions into irreducible representations, such that representations
from any two decompositions are inequivalent. Here, different decompositions involve Landau functions for
propagation along different lattice vector directions. The invariance translation-operator group for a system
with 2 uniform magnetic field only is also discussed; it is of Type I,and its physical irreducible representa-

tions are given,

I. INTRODUCTION

The invariance groups of the Hamiltonian for an
electron moving in the periodic potential of a crystal
and a uniform magnetic field have been a subject of
investigation in a series of recent papers.1~5 One of
the main results of these investigations has been to
show that the translational symmetries of the system
lead to infinite invariance groups with a very special
structure, critically dependent on the direction and
magnitude of the field relative to the orientation and
lattice parameters of the crystal. This was first
shown in the papers by Brown! and Zak.? A complete
classification of these groups in so far as transla-
tional symmetry is concerned is given in the paper
by Opechowski and Tam,4 together with a discussion
on their irreducible representations. This has been
extended to include symmetries other than trans-
lational by Tam.5 At the same time it has become
clear that the representations of these groups pos-
sess some features not usually found in applications
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to solid state physics, and it is the purpose of this
paper to try to set them in the context of mathematic-
al developments in the general theory of representa-
tions of infinite groups. In fact, it turns out that these
features can be characterized very well in terms of
some well-known mathematical results for groups
that are not of Type I, whose definition we give later.
In the process, several questions that have been rais-
ed on the properties of certain infinite-dimensional
representations of the invariance groups can be
answered. %

The system under discussion consists of a single
nonrelativistic electron without spin subject simul-
taneously to a uniform magnetic field B and an
electric potential V(r) with the periodicity of an in-
finite three-dimensional lattice; here r denotes the
position vector of the electron. The Hamiltonian is

m:-;%( —~%eéA(r))2+‘D(r), (1)
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where — {7V is the electron momentum operator,
A(r) the vector potential for the magnetic field and
m,e,c,and h are the electron mass, electron charge
(a negative number), velocity of light, and Planck’s
constant 2 divided by 27. There is of course a cer-
tain freedom of choice for A(r), and we take for con-
venience the so-called symmetric gauge

A(r)=3BXr. (2)

A change of gauge makes no essential difference from
the point of view of the symmetry of the system,4 so
that there is no loss of generality in retaining (2).

The Hilbert space of states in which 3¢ acts is the
usual space £ = L2(R3) of functions square-integrable
over infinite volume, and & itself will in general have
an energy spectrum with a continuous as well as a
discrete part;in fact, in the systems considered
below the spectrum is entirely continuous. Periodic
boundary conditions will not be applied.

Any group of unitary operators in £ that commute
with ¥ is termed an invariance operator group of IC.
There is, of course,a maximal such group which is
called the symmetry group of X;but since in this
paper we shall not usually be dealing with the maxi-
mal group we retain the term “ invariance group.” To
be more explicit, we shall be concerned with the in-
finite “ invariance translation operator group” of 3.4
As the name implies, the only geometrical operations
involved are the translations. Rotational and time-
reversal symmetries will be ignored, except for a
brief mention of the former at the end.

The plan of this paper is as follows. In the remaining
part of the Introduction we summarize some defini-
tions and concepts from the theory of representations
of infinite groups that we need later, including a
description of what is meant by groups and represen-
tations not of Type I. In Sec.II we introduce the in-
variance translation operator group for 3 of (1) and
show that it is of Type I when and only when the mag-
netic field is “rational,” i.e., its contravariant com-
ponents, with respect to a triple of basic primitive
lattice vectors for the crystal, are rational numbers
in certain natural units. We also introduce the in-
variance translation operator group for the system
with O(r) = 0, i.e., an electron moving in a magnetic
field only. The relationship between this group and
the invariance translation operator group for X of
(1), which it contains as a subgroup, is used in the
later analysis. In Sec.III we investigate the irredu-
cible unitary representations of the group for systems
with the magnetic field parallel to a lattice vector,
with particular attention to the nonrational, i.e., non-
Type I case. For this case, we find 2 nondenumer-
able number of equivalence classes of irreducible
unitary representations, which are given in a sum-
mary at the end of the section. (We should note that
present mathematical theory does not allow us
definitely to establish the complete set of irreducible
representations of a non-Type I group.) The irre-
ducible unitary representations for the O(r) = 0 case
are also obtained and are given in the summary. The
main method used in this section is Mackey's theory
for semidirect products. Finally, Sec.IV contains an
analysis of the (reducible) representation of the
group afforded by the state space £ for the systems
discussed in Sec.III. The principal result here is
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that the representation afforded by £ is not of Type I
when the field is irrational; the proof being by a
method of explicit decomposition of the representa-
tion,

All groups referred to throughout, in particular all
the invariance operator groups, are topological groups
that are locally compact and separable. We shall be
especially concerned with representations of infinite
groups of this class, mainly those of infinite dimen-
sion, and so it is appropriate here to recall some of
their properties. The following discussion will be
primarily descriptive; practically all the material

is drawn from the articles of Mackey7~10 on infinite~
dimensional group representations, and the reader is
referred there for details and references to the
mathematical literature. A review article by Cole-
man!l ig also useful in this regard.

We begin with some terminology. Let G ={g} be a
separable locally compact group with elements g, By
a representation I"' of G we always mean a continuous
unitary representation by operators in some separ-
able Hilbert space 9, and we write T = {T'(g)},where
I'(g) is the unitary operator in 9 representing g. We
often refer to N as the carrier space of I'. Of course,
the invariance operator groups in the carrier space
&£ of states are representations of themselves. How-
ever, in the sequel we shall sometimes talk of them
in the sense of abstract groups (of which they are
then faithful representations); but the meaning at the
time should always be clear from the context, Two
representations T' = {I'(g)} and T = {I'"(g)} of G
carried by the spaces 9L and M’, respectively, are
said to be equivalent, and written I" = I'’, if there
exists a unitary map U of M onto M’ such that T'(g) =
U 1T(g)U for all g € G. A representation I' carried
by 9N is said to be irreducible if M possesses no closed
subspace stable under the operations of G. If M pos-
sesses such a subspace 9, then T is reducible; T re-
stricted to N is called a subrepresentation of T. We
recall that the unitary property implies that a re-
ducible representation is decomposable, with a cor-
responding decomposition of its carrier space. By
the decomposition of a representation we shall mean,
in general, a divect integral decomposition and not
only a direct sum, which is a special case, The pre-
cise definition can be found in the literaturel2;a
direct integral decomposition of a representation I'
and the accompanying decomposition of its carrier
M have the form
M=o [ Mduly), T=0f Cduy), (3)
where LY is the carrier space for I'?, for each y be-
longing to an index space Y, and where u. is a mea-
sure onY, The ¥ and I'¥ will be termed the con-
stituents of N and I' in the given decomposition, re-
spectively. We note that a given constituent I'¥ is
not a subrepresentation of I" unless the latter can be
written in the direct sum form I' =T¥ & I'’,and a
parallel statement holds for 9¥, Two representations
which have no equivalent subrepresentations arg
termed disjoint. A representation which cannot be
decomposed into a direct sum of two disjoint sub-
representations is called primary,13 Qbviously, irre-
ducible representations are primary, and so are
direct multiples of irreducible representations, i.e.,
representations that decompose into a direct sum of
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the same irreducible representation (to within equi-
valence) a countable number of times. We note that
the term “irreducible representation” has been used
in the last phrase in the sense of ““ equivalence class
of irreducible representations” rather than that of
“individual irreducible representation’”; both mean-
ings will be used without further specification when
the context is clear. The same duality of meaning
will occur in referring to primary representations.

Primary representations do not always have the
structure of the ones mentioned above, as being direct
multiples of irreducible representations; but any pri-
mary that does is said to be of Type I. Furthermore,
any primary representation that has an irreducible
subrepresentation is automatically equivalent to a
uniquely-determined direct multiple of a uniquely-
determined irreducible representation and so is of
Type I. A non-Type-I primary representation, on the
other hand, has no irreducible subrepresentation.
Concerning primary representations in general, one
can make the following statements: (a) Any primary
representation can be decomposed into a direct in-
tegral of irreducible representations, but not neces-
sarily in only one way; (b) For a primary representa-
tion ' of Type I, every decomposition (3) of T into
irreducible representations has the property that
T'y= y for (u-almost) ally € Y, where y is some
fixed irreducible representation independent of the
decomposition; and, consequently: {(c) Any primary
representation exhibiting decompositions into irre-
ducible constituents without the property in (b) is not
of Type I. Indeed, in connection with (c), there are ex-
amples of non-Type-I primary representations de-
composable into irreducible constituents in two or
more different ways, each having no constituent in
common with the others.14 One such example, for
which there is in fact an infinite number of decom-
positions that differ mutually in this fashion, occurs
for some of the groups discussed in this paper (Sec.
IV). We should add that non-Type-I primary repre-
sentations can be classified further into Types II or
IN.15 (One way of characterizing the difference is: A
non-Type-I primary representation is of Type II or
IIT according to whether or not it has a subrepresen-
tation inequivalent to the whole representation, res-
pectively,11)

A group whose primary representations are all of
Type I is called a Type I group; in particular all
finite, compact, and commutative groups are of Type I.

For any group, the primary representations can be
considered in some sense the basic “building blocks”
for arbitrary representations. Indeed, there is a
theorem to the effect that if I' is any representation of
G,then there exists a direct integral decomposition
(3) of T into primary constituents I'?, the so-called
central decomposition, in which the constituents are
mutually disjoint (apart possibly from a subset whose
indices y have u-measure zero in ¥') and form a
uniquely determined set (to within certain possible
reassignments of indices). For a more precise defi-
nition of the central decomposition we again refer

to the literature.? Thus, to this extent the study of all
representations can be reduced to a study of primary
representations; but as the earlier remarks on pri-
mary representations imply, the next step of reducing
the latter to a study of irreducible representations
seems possible only for groups of Type-1. This said,
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the actual survey of all the primary, or even of all the
irreducible, representations of a non-Type-I group

is a difficult matter, and does not appear to have been
completed in any explicit case.16 1t is known, how-
ever, that every non-Type-I group does have a large
supply of irreducible representations.

Although we shall not be considering the energy spec-
trum in this paper, it is worth pointing out that a
knowledge of the central decomposition of the opera-
tor invariance group of X in the state space £ gives
us certain information on the spectrum of 3. Accom-
panying the central decomposition there is a corres-
ponding reduction of the Hamiltonian as a direct in-
tegral: The simultaneous decompositions for £ and

X are then

£=0f Lrdu(y), ®=0f Rdu(y),

where the constituents Y of 3¢ operate in the re-
spective £, and where the £ are determined by the
central decomposition. The problem of finding the
spectrum of X is thus reduced to the problem of de-
termining it for the constituents 3¢¥. One of the most
familiar examples of this reduction procedure in
solid state physics is for the system of a Bloch elec-
tron without magnetic field, where the invariance
group is the ordinary translation group of the lattice,
and y is a Bloch wave vector and Y the Brillouin zone.
In this example, of course, the group is of Type I,
whereas the above decomposition holds whether the
group is Type I or not. Certain technical mathemati-
cal problems that we have ignored in the preceding
description are considered by Scharf17? and Mackey 18
for the Bloch-electron system without field.

. THE INVARIANCE GROUPS

In this section we present the invariance translation
operator groups for the Hamiltonian (1) and for the
potential-free Hamiltonian with U(r) = 0, They are
given as set forth by Opechowski and Tam,4 and their
notation will be followed as far as possible.

It is convenient to introduce coordinates with axes
and scale determined by an arbitrary three-dimen-
sional lattice, to be used for the potential-free case
as well as otherwise. Denoting the three linearly
independent basic primitive vectors of the lattice by
a,,a,,and a;, we choose the ¥, x,,and x5 coordinate
axes to lie along these directions, respectively, form-
ing what will be in general an oblique coordinate
system., We write

r=xa; +x,a, + xqa3

and v =uv,a; + vya, +va5 (4)
for an arbitrary position and translation vector, res-
pectively, where the triples (x, x5, ¥3) and (vy, v,, v3)
are dimensionless real numbers. The scaling units
along the three directions are the lattice constants
la;| = a,, la,| =a,,and |ag| = a;. The origin of
coordinates is located at a point of the lattice so that
the lattice itself is the triply infinite set of points
with coordinates (n,,n5,73) for arbitrary integers
ny,ny,and z,.

The vectors v form the infinite group V of transla-
tions in three dimensions, and for each v € V we can
define a translation operator [v] in the state space £,
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where
[vlf(r) = f(r —v) (5)

for any function f (r) in £. The [v] form a translation
operator group which we can without confusion denote
by the same letter V. The periodic potential V(r) is
assumed invariant under the subgroup T of V of all
primitive translation operators [t] with

t =n,2, +nya, +nja, (6)

for an arbitrary triple (rq,75,%3) of integers, where
for a given V(r) the coordinate system has been
chosen in the obvious way. Again the group of
vectors t and the group of operators [t] will be de-
noted by the same letter T.

The group for the potential-free case will be pre-
sented first. The form of the operator depends on the
gauge (2) but it can be shown that for each system
discussed here, with or without potential, the groups
for different choices of gauge are all isomorphic with
one another.4

The elements of the translation operator invariance
group W(B) of (1) where U(r) = 0 are the operators
[v,A] in &, where

[v,r] = e27i* exp[—(ie/2ck) Ber X v][v] )

for all ve V and all real A € [0,1). It is in fact easy
to verify by inspection that the operators (7) com-
mute with 3C when the electric potential is zero and
that they form a group with multiplication law

[v,A][v,M]=[v + Vv, x + A" + (e/2ch) Bev X V'], (8)

where the second component in the element on the
right-hand side will always be understood as equal to
its calculated value modulo whatever integer is
necessary to reduce it to the range [0, 1). If v is any
real number, we shall use the notation (v), to indicate
its value reduced in this way. We observe from (8)
that W(B) is not Abelian. Its center contains the
circle group of operators {0, 2] for all x € [0, 1),
where 0 is the zero translation and W(B) is an exten-
sion of the circle group by V. It is not difficult to
verify that W(B) is minimal in the sense that it has no
subgroup which is an extension by V.,

The infinite group W(B) has all the requisite topo-
logical properties: In fact, it is obviously a separable
locally compact group with respect to the natural
topology generated by open sets in R3 X S, where R3
is the three-dimensional Euclidean space of points

v = (vq, V5, ¥3) and S is the circle with unit circum-
ference of points A0 < A < 1), We shall see in the
next section that it is a group of Type L.

The groups W(B) for different B # 0 are all isomor-
phic,4 a situation which is far from being true of the
invariance groups when there is a potential U(r).
Before giving the groups in this case, it is convenient
to express B in the form

B = (ch/e|Q|)(n,a; + nya, +15a3), Q =aj*a;Xa,,

(9)

where || is the volume of the lattice primitive cell.
In this way, B is specified by a triple (n,,75,74) of
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dimensionless real numbers. Now,with a potential T(r)
invariant under the group T of primitive translations
[t], it follows from (7) and (8) that the Hamiltonian (1)
is invariant under the operations [t, A]; and that these
operations form a group for allt € T and all A €

[0, 1). This groupis an extension of the circle group by
T;but it is not minimal in this case: It possesses
subgroups that are extensions by 7.4 To see this, we
write down their multiplication law derived from (8):

A, XM ]=[t +t', A+ X" + 3épenX 1], (10)

where t = n,a; + 7,3, + nzazandt’ =nja; +nya, +
n4a 4, and where we have used (9) for B. The quantity
£ =9Q/|Q] = +1 will be called the sign of the basic
vector trio (a,,a,,a3). The quantities 7= (n,,1,,73),
n = (ny,n,,n3),andn’ = (n},ny,ns) behave like vec-
tors with cartesian components and, by a slight abuse
of terminology, will be referred to as the field 7,
translation n, etc. Consider the countably infinite set
of operators

T(B) = {[t, su°n]} (11)

for all t € T and for all vectors o = (., Mg, 4 5) With
arbitrary integral components leading to distinct
numbers (3p°1), € [0, 1). It follows immediately from
(10) that the operators of T(B) are closed under mul-
tiplication and form a group; furthermore, we can
verify that T(B) is a minimal extension by 7. Then,
by definition, the countably infinite group T7(B) is the
invariance tvanslotion operator gvoup of the Hamil-
tonian (1)4; it is evidently a subgroup of the corres-
ponding invariance group W(B) for the potential-free
system. The structure of T(B) depends critically on
the direction and magnitude of B; in other words, on
the values of 17,,7, and n,. There are two sharply
divided cases, according to whether all three of these
numbers are rational, or one or more is irrational,;
the field B is said to be “rational” or “nonrational”
accordingly. We discuss briefly the two cases in turn.

(@) Rational field: Here 1, = m;/M,, where m, and
M; are relatively prime integers. The group T(B)
has the characteristic that the number of distinct
(zp°m), that appear in the operators (11) is finite.
This case has been widely investigated,1™4 and the
details can be found in Ref. 4, The field n can be put
in the form

n = (m/M)I, (12)

where m and M are relatively prime integers,and [ is
a vector with relatively prime integral components
[these are the components of the shortest lattice
vector (6) along the direction of the field]. The group
T(B) consists of the operators [t,A] for allt € T and
A=0,1,..., (r—1)/r,where r = M (m even) or 2M
{m odd). We observe that when M = 1 and m is even,
only A = 0 appears, and T(B) is Abelian and isomor-
phic to T.

(b) Nonvrational field: Here at least one of the
components of 7 is irrational, say ;. The set of dis-
tinct (3u*n), €[0, 1) appearing in the operators (11)
is now infinite, since it contains the numbers (3147,),
obtained by taking all y of the form (0,0, u3). Con-
sequently T(B) consists of the operators [t,A] for all
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t € T and an infinite number of A; we note that it is
never Abelian.

A more refined classification of these invariance
groups according to the rationality or otherwise of
one, two, or three of the components of 7 has been
made in the literature,.4 Their evidently wild varia-
tion with infinitesimal changes in the magnetic field
has been commented and is reflected in the proposi-
tion in the next paragraph,

The T(B) are all given the discrete topology (each
element an open set) and are, therefore, separable
and locally compact. From a theorem of Thomal9
that a countably infinite discrete group G is of Type I
if and only if it has a normal Abelian subgroup F such
that the factor group G/F is finite, we can conclude
that

Proposition 1: The invariance translation opera-
tor group T(B) is Type I if and only if the field B is
rational.

For the case (a) of rational field we have then to find
a normal Abelian subgroup of finite index in 7'(B). To
this end, we observe from (10) that two elements of
T(B), say [t,A] and [t’,)’], will commute when and
only when

7en X n’ = (m/M)l*n % n’ = integer,

where we have used (12) for 7. Thus, for example,
all operators of T(B) of the form [7,A] for arbitrary
A= 3(p+n), and for 7 = M(p,a, +p,a, +psa;) with
arbitrary integers p4,p,,p 3, commute with every
group element; and it is easy to verify that they form
a subgroup F of T(B). This subgroup is Abelian and
normal, and since the 7 form a group of translations
in three dimensions based on an enlarged primitive
cell M times the size of the original, it follows that
the factor group T(B)/F is finite. Thus T(B) is of
Type I,

When the field is nonrational as in (b), the require-
ment for two elements to commute,i.e.,n*n X n’ =
Integer, tells us that no Abelian subgroup can be of
finite index in T(B). For if 4, say, is irrational, this
requirement can only be satisfied for all elements of
an Abelian subgroup if (n X n’); = 0 for every pair
of such elements, and this is only possible if the sub-
group is formed of translations in one or two dimen-
sions. The index in T(B) of any Abelian subgroup is
therefore infinite, and so T(B) is not of Type I

It is worth noting parenthetically that for a rational
field there are infinitely many Abelian subgroups of
the form F = {[r, 0]}, where 7 runs over the transla-
tions of a three-dimensional sublattice and where
each [1,0] commutes with all elements of T(B). This
follows from arguments similar to those used in the
proof above. For subgroups F that are minimal (with
respect to inclusion), the primitive cell of the cor-
responding sublattice, whose three basic vectors are
multiples of a;,a,,and a,, respectively, is called by
Brown! a “magnetic unit cell.” There will, in general,
be a (finite) number of minimal subgroups F with
different magnetic unit cells, but in each case the
idea is the same: The magnetic unit cell is a minimal
domain to which we can apply periodic boundary con-
ditions for the Hamiltonian. Thus, for any finite crys-
tal built up by a repetition of one of these magnetic
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unit cells it is possible to define a system with perio-
dic boundary conditions; then the infinite group is re-
placed by a finite group in similar fashion to the
field-free case.

When the field is nonrational, it follows from the
proof of the above proposition that it is impossible to
find a magnetic unit cell; and so we are always oblig-
ed to retain infinite systems,

From now on, for the sake of simplicity we shall
specialize to systems, in which the magnetic field is
directed along a,;20 then with n, =7, =0 and N3 =1,

B = (ch/elal)as. (19)

We collect together some formulas for the groups
W(B) and T(B) when B has the value (13). There are
three cases:

(A) The potential-free case: V(r) = 0. Since the
W(B) are isomorphic for all B, it is evidently no real
restriction to suppose B parallel to a,; rather, we
choose the lattice so that this is true. We replace
the symbol W(B) by W. The elements (7) of W are

[v, 2] = e2mir expl—intn(vyx; — vyx,)} V] (14)
for v eV and all real A {0, 1). The multiplication
law (8) becomes

VAV, XN T=[v + v, 0 + ) + (v, v) — v,05)]. (15)

(B) Case of periodic potential and irrational field
1: The group T(B) for B of (13) will be denoted by
T,. The elements (11) will be written [t, A; ], where

2min; ,
[t,y]=e "N expi—i TEN(nyx, —nyx,) H[t]  (16)
for all t € T and all A; = (3/1),(j an integer). The
multiplication law (10) becomes

(600, 0] = [t +t, 8 + X, + 3En(nyny —nyny)] (17)

(C) Case of periodic potential and rational field
1 =m/M, Here m and M have the same meaning as
in (12), where now I = (0,0, 1). The group elements
and multiplication law are as in case (B) with n=
m/M, except that the set of A; is now finite.

The invariance groups in each of the above cases can
be simply expressed in terms of Abelian subgroups
involving translations along three different directions,
respectively. In fact, if G denotes any one of the
groups of (A)~(C), then it can be factored first as a
direct product

G =P XQ,
where

{[1)333, 0]}

(18)

S{[”1a1 + 0,3, 2] (A)
(192)

P =

y @ =
{[rsa5, 0T 8{[7113.1 + ny2,, Aj]} (B), (C)
(19b)

Here as in other places curly brackets are used to
denote collections of elements, and the specifications
(A), (B),and (C) refer to the three cases above, The
factorization (18) separates translations along the
field direction a5 from those in the a; —a, plane.
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Further factorization of @ into Abelian subgroups has
the semidirect product form @ = N (g H. [We recall
that for any group @ to be a semidirect product of
two subgroups N and H (Abelian or not) requires that
Q = NH, that N NH = { Unit element}, and that one of
them (N) be normal. This means, in particular, that
every element g of @ can be written ¢ = nk where

n € N and h € H are unique. The product of two ele-
ments ¢ and ¢’ being qq’ = (nhn'h 1)(hh'), we observe
that, given N and H satisfying the above three require-
ments, their semidirect product is characterized by
the action of H on N, i.e.,the automorphisms .:n—
hnh™1 of N generated by the # € H.] Indeed it is easy
to see that we can write

Q=N® H, (20)
where ’
({[vs2,5,0]}  (A) (21a)

g{[vlal’ A]}

N=-
({[”131’)‘]' 1t

The symbols specifying the various groups defined in
(18)—(21) will carry labels distinguishing the different
cases only when the context is not clear. Then Ny,
for example, will refer to the group N in case (B).

, H= .
({[n,245,0]} (B),(C)(21Db)

It should be borne in mind that there is no unique way
of expressing @ as a semidirect product of sub-
groups involving translations in different directions;
we have given one instance of an infinite number of

possible ways. Any two vectors by, b, for which
2

= l i=1,2
j=1

i3>
(22)
integral and I ;1055 — 11509, = £8/8 = %1

b;
L
can be chosen as the basic primitive lattice vector
pair for the two-dimensional a; — a, lattice. Here
£b =ag+b; X by/lasb; X b,| is the sign of the trio
(b;,by,a;). Then for the discrete groups, for ex-
ample, we can factor @ as

Q =N(b1)@H(b2) }
N(bl) = {[Vlbl’)\j]}; H(bz) :{[yZbZ’o]}

where 7,7, run over all integers. These different
ways of expressing @ are important for the study of

, (23)

the representations of the non-Type-I group T'. There

is a factorization (23) for each ordered choice of (b,
b,); in particular, we get complementary factoriza-
tions on exchanging b; and b,. Two factorizations
coincide when the corresponding basic vector pairs
differ in the sign of one or both vectors. To avoid
this situation, we shall restrict the domain of b, and
b,. We divide the a; —a, plane into two with a line
drawn through the origin at right angles to the bisec-
tor of a, and a,. Then we allow b, and b, to lie only
in the same half-plane as a; and a,; if one of them
lies along the dividing line, we allow only the direction
which makes an acute angle with a,. Now each factor-
ization (23) will be different.32

A word on notation is necessary at this point, We
shall often write & = (b,, b,) as shorthand for an
allowed basic vector pair, and denote the complemen-
tary pair by b = (by, b;). The original pair will be
written @ = (a;,a,). The 1~ and 2-components of a
fixed vector t depend, of course, on the basic vector
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pair b, and they will bear an appropriate label, thus:

t =n,a, +nya, +nza; =nib, +nib, +nja;. Com-
ponents nq, 2, without superscript refer to the basic
vector pair a;the components n}, n} are related lin-
early to nq, n, through (22).

The group multiplication law (17) retains the same
form on changing to the basic vector pair &. The only
difference is that in the product of a given pair of
elements, the old components must be changed to the
new ones and £ to £2; indeed it is easy to verify using
(22) that £(nynjy —nyny) = £8{ni(n)’ — ni(n%)’}. This
form-invariance of the multiplication law will be ex-
ploited in the investigation of the irreducible repre-
sentations of T.

Finally, we should remark that all the subgroups in-
troduced above are topologically closed (as subsets
of their respective groups). This is a necessary con-
dition for the application of much of the theory of
representations in the next section.

III. THE IRREDUCIBLE REPRESENTATIONS

For the “ rational” case (C) of the previous section we
know that the group is of Type 1. Its irreducible rep-
resentations have been obtained by Brown, Zak,2 and
Fischbeck,3 and are also given in the paper by
Opechowski and Tam.? This case will not, therefore,
be considered further. The last paper cited gives
some of the representations for the “ nonrational”
case (B) as well; but we shall be able to extend the
analysis and find many more.

The irreducible representations of G in both cases (A)
and (B) will be Kronecker products of the irreducible
representations of the direct factors P and @ in (18).
For P, the group of translations parallel to the mag-
netic field, they are all one-dimensional and easily
written down; those for the semidirect product @ are
more interesting, notably in the case (B) of periodic
potential with irrational field 7, and to tackle them we
use the procedure developed by Mackey.8:10 We shall
describe this procedure in only so much generality as
is necessary for our purpose, and apply it to the two
cases as we go along.

The irreducible representations of P of (19) are all
one-dimensional with characters
X g :{6-2 Tiky vS}’

— 0 < ky <o, (A) (24a)

»2 y
x2={e ", 0<ky,<1, (B) (24b)
labeled by wave vectors for the z direction. In the
curly brackets, v; and n4 run over all elements of
their respective groups.

From here on, we fix our attention on the group Q.
Let @ = N & H be for the moment any (separable,
locally compact) group that is a semidirect product
of (closed) subgroups N and H of which N is commu-
tative and normal in . The method to be used aims
to construct irreducible representations of @ from
those of N and of H. Since N is commutative, its irre-
ducible representations are all one-dimensional with
characters x, = {x,(n)}, where x,(n) is a continuous
function of » € N with unit modulus and where the
parameter [ labels the representations. The set N of
all x, for different I is called the character space of
N. It can be made into a Borel space,i.e.,given a
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collection of Borel sets,21 in a natural and well-de-
fined manner that we do not attempt to describe in
general, but shall indicate for our two examples. The
Borel structure of & is of importance later on.

For our two cases (A) and (B) the groups N and H are
defined in (21). The elements of N are

Xk,; ={e21ri§)\ e—21rikv1}, _w< k,C < o, (A) (25a)
XK,C :{eZTri;)\]- e—Z‘nixn}}’ 0< k< 1’0 << |s_|,(13)
(25b)

Here k and k are wave vectors along the a; direction,
The significance of € will be seen later. The respec-
tive character spaces N with elements (25) are for
(A) the infinite two-dimensional plane with Cartesian
coordinates (%, £) and for (B) the surface of a torus
with cyclic coordinates k and {. The Borel sets in
both cases are the standard ones, generated from the
open sets.21

Returning to the general semidirect product @, we
observe that the action of H on N, namely the auto-
morphism &:n — hnk™! of N where k2 € H, induces a
corresponding action of k on N: for each h we define
a mapping in N given by

x ={x@)},  x, = {xmh 1)},

where yx, may or may not be the same character as
x- The set of distinct x, generated from x is called
an orbit of H in N. Since the same orbit is obtained
in this way from any one of its members, the action
of H on N partitions K into disjoint orbits. Each or-
bit is a Borel set in . Further, with each x of N we
associate the so-called isotropy group H, of x, being
the subgroup of all 2 € H for which x, = x. The H,
are closed subgroups of @;for different x of the same
orbit they are conjugate subgroups in . Using (21)
for the elements of N and H, and with the aid of the
respective multiplication laws (15) and (17), we find
for the two cases:

(A) the k plane is partitioned into orbits 0% = {&, ¢|
— o < k< o} and 0% = (&, 0), respectively, lines
parallel to the k axis for £ # 0 and points on the &
axis for ¢ = 0. The isotropy groups are H (for any
member of %) and E (for any member of 0¢), where
E is the group consisting of the identity element[0, 0].

Bix = Xu

(B) The orBits on the surface of the k — § torus are
more complicated. Each orbit lies in some circle
$¢ ={k, £|0 < k < 1}. For ¢ = 0, each point on §°
forms an orbit 9%, The orbits on the circle $¢ for

¢ =0 are OlK.¢ = {(k + {&nmy),, ¢l all ny; ¢ =0}, the
n, coming from the action of [#,a,,0] of H. The
label [«] stands for the set of distinct numbers (x +
LEnm,), as n, goes over all integers; k can evidently
be replaced in the bracket by any other member of
the set, When |¢n! is a rational number, equal to

m /M, say, in its lowest terms, each orbit in ©¢ con-
tains M points. Also, the orbit label [k] can be con-
veniently replaced here by the smallest of the M
members of [k], say %, where 0 < k¥ < 1/M. There is
one orbit in $¢ for each % in this interval. On the
other hand, when |¢n| is irrational, each orbit con-
sists of a countable infinity of points, dense in §t.
Furthermore, it is not possible in this case to distin-
guish or label the different orbits in 8¢ with the k
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coordinates of a representative point from each or-
bit, in the sense that no such collection of coordin-
ates can form a measurable set of the circle.22

The isotropy groups are H {for any member of 0%),

E (for any member of 9l«}.¢ with |¢n| irrational) and
HF (for any member of O5.% with |{n| rational). Here
H* is a subgroup of index M in H and consists of the

elements of H for which (8 + ¢&nn,), = k.

Inorderto define the representations of N from which
the irreducible representations of @ are constructed,
we must first introduce certain measures on the
character space N. Any countably additive o-finite
measure (4 defined on all Borel sets of N is called a
Borel measure on N.21 From now on, all measures
will be understood to be of this kind.

The mappings of N onto itself under the action of H,
defined earlier, can be shown to be Borel isomor-
phisms, i.e.,if h: 6 §,, where &, is the image of the
set §,then &, is a Borel set whenever § is a Borel
set and vice versa, for all k € H. Thus §, is always
measurable when § is, and we can define a measure
8 to be H-invariant whenever p(8;) = u(8) for all

h € H and all Borel sets § €N. An H-invariant mea-
sure is further said to be evgodic,if §, = & (to within
a possible null set)for all # € H implies that § is a
null set or the complement of one. (A null set for u
is a set with zero measure with respect to u.)

In the sequel, two measures will be referred to as
“different” if and only if they have different null sets.
Measures with the same null sets are said to belong
to the same measure class, and throughout the rest of
the paper the word measure will be used as a synonym
for measure class; measures given explicitly are to
be thought of as convenient representatives of their
clags. The theorems and results of the general
theory presented below can be shown to be indepen-
dent of the choice of measure within a given class.
(We should remark that, to be quite general, H-invari-
ance is defined for measure classes rather than indi-
vidual measures (see, e.g., Ref.10, p.25). An H-invari-
ant class may or may not contain individually H-in-
variant members, If it does not, small modifications
are necessary in the exposition which, however, we
will be able to ignore, since the situation does not
arige for the measures considered in our examples.)

Let § be any Borel subset of N. A measure U on N is
said to be concentrated in F if W& = u(§ N F) for all
Borel sets § € N; evidently then p(N) = u(¥). If § is
regarded as a space with Borel sets derived from
those of N,21 then to specify the measures on N con-
centrated in § amounts just to specifying the mea-
sures on ¥, The same goes for the H-invariant mea-
sures concentrated in § whenever ¥ is a subset in-
variant under the action of 3 (i.e., maps onto itself
under the action of H), If § is transitive under the
action of H (i.e., the set {x,} = ¥ for any x € ¥), it can
be shown that there exists one and only one ergodic
H-invariant measure concentrated in ¥ .8 Since the
transitive Borel sets of N are just the orbits, we can
divide the ergodic H invariant measures on N into
two kinds:

(i) the tramsifive measures: Namely, those concen-
trated in the orbits, one for each orbit.

(ii) the strictly evgodic measures: Namely those, if
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they exist, that are not transitive. For u any such,
1(0) = 0 for every orbit 0.

The situation is very different according to whether
or not there exist any strictly ergodic measures. If
not, the semidirect product @ = N ® H is said to be
regular,8 and in this case the procedure for obtaining
the irreducible representations of @ is relatively com-
plete when those of H are known. A sufficient condi-
tion for regularity is the existence of a Borel set in
N intersecting each orbit in one point.8 There is a
theorem that a regular semi-direct product @ is of
Type 1 if and only if each isotropy group H, is of Type
1.8 For a nonregular semidirect product, the present
state of knowledge is much less satisfactory; for in-
stance, there seems to be no known example of one
for which all the strictly ergodic measures have been
definitely identified.23

We now investigate the ergodic H-invariant measures
on N for (A) and (B); we recall that they should be re-
garded as convenient representations of their respec-
tive measure classes.

(A) The semidirect product here is regular, as the
Borel set consisting of the union of the %k axis and the
{ axis intersects each orbit just once., From the dis-
cussion above @ is then, of Type I, since the isotropy
groups are all either H or E, both of Type I. The
ergodic H-invariant measures are easily established,
since they are transitive and one-to-one with the
orbits. They are: On 9¢ the Lebesgue linear measure
and on 0% the measure assigning unit mass to the
single point,

(B) There are strictly ergodic measures here as
well as transitive ones, so that the semidirect product
is not regular; and in any case we know from Sec.II
that it is not of Type I. The transitive measures are:
On 0% the measure assigning unit mass to the single
point and on Okt (or on OF.¢ for |¢n| rational) the
atomic measure assigning unit mass to each point of
the orbit.

Consider any circle $¢ where | is irrational, so
that orbits are dense in the circle. Lebesgue linear
measure on 8¢ is H-invariant and strictly ergodic:
the action k — (k + CEnnz), of the elements of H ro-
tates 8¢ through multiples %, of an irrational frac-
tion [¢n|of 27. Lebesgue measure is well known to
be ergodic relative to this action on the circle,and it
is certainly not transitive since each orbit, being a
countable set, has measure zero (see, e.g., Ref. 8,
Sec. 7). It is not known at present whether there exist
other measure classes on the circle that are strictly
ergodic with respect to this action of H,

Circles 8¢ for |{n| rational evidently do not admit
strictly ergodic measures.

We return to the general theory. Given any fixed
measure 4 on N (ergodic H-invariant or not), we in-
troduce a representation of N as follows. Let L2(N, u)
be the Hilbert space of functions on N, measurable
and square integrable with respect to u. Then the
representation is defined in L2(A, 1), and is given by

A, ) f () = x(n) f(x)

fornck and f(x) €L2(ﬁ, ). The importance of the
A, is revealed by the following,

(26)
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Theorem 124: H A is an irreducible representa-
tion of @, then its restriction to N is a direct multi-
ple (finite or infinite) of some A, for u anergodicH-
invariant measure on N. We shall say that A is based
on the corresponding measure. Irreducible A based
on different measures are always inequivalent,

The aim of Mackey's method for finding the irredu-
cible representations of QAis thus: Find the ergodic
H invariant measures on N, then find the irreducible
A based on each of them. We have discussed the
first part of this program; for the second part we
take the transitive and strictly ergodic measures in
turn,

Consider the transitive measure y concentrated in
the orbit 0. Let x be any fixed member of O with iso-
tropy group H,,and let @ = {w(n)h e Hx} be any irre-
ducible representation of H, , with carrier space £,
We introduce the (closed) subgroup L = Hx ® N of
@ called the little group of Q. The assignment ni —
x(#)w(k) of the elements of L, to operators in £,
yields an irreducible representation Q, of L, , the so-
called allowed representation of L, corresponding to
2. We construct the representation of @ induced from
€, in the following manner. Let @/L, = {L, s} be the
right coset decomposition of @ with respect to L,
where for convenience we select the coset represen-
tatives s to belong to H. The set of characters x, =
{x(sns1)} for all s describes the orbit © just once,
by definition of L, . It turns out that the orbit O (with
Borel sets as a subspace of N)21 and the coset space
Q/L, (with Borel sets as a quotient space of )21 can
be identified by the 11 Borel isomorphic mapping
{LX stes Xs; 0y @ slight abuse of terminology we can
take s as a parameter describing both spaces. Let
£(0, u) denote the Hilbert space of functions defined
on 0 with values in £,. This consists of all functions
f(s) from O (writing s in abbreviation for x ) to £,
such that the scalar product (¢, f(s)) is a g-measur-
able function on 0 for all ¢ € £ and such that

fo | f(s)li2dw(s) <, where | f(s)| is the norm of

f(s) € £,. Then the representation A = {A(q)} of @
induced from Q. is carried by £(0, u) and defined

by

Alg)f(s) = Q,(sq571) f(5),

for all g € @ and all f(s). Here, § is the unique coset
representative for which sg5~1 € L, for given ¢ and s.

sqst €L, 27

Theovem 2:24 Given a transitive measure u con-
centrated in an orbit O, with isotropy group H, for
x € 0. For each irreducible representation Q of H_,
the A of @ corresponding to 2 via (27) is irreducible and
based on 1. Two such representations are equivalent
if and only if the corresponding Q of H, are equiva-
lent, and the representations obtained from all the in-
equivalent  form the complete set of irreducible
representations of @ based on u, independently of the
initial choice of x € 0.

Thus, the problem of finding the irreducible repre-
sentations of @ based on a transitive measure is re-
duced to the problem of finding the irreducible repre-
sentations of H. No such practicable method exists at
present for a strictly ergodic measure, although even
here at least some of the representations based on it
can be constructed. Suppose p is a strictly ergodic
H-invariant measure. LetQ = {w(k)} be any one-di-
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mensional representation of H. For anyq =nh € Q,
we define a representation A = {A(q)} of @ in the space
L2(N, u) by

Ag)f () = xtm)w®) f (xs)

for all f(x) € L2(N, u). With the aid of the H-invari-
ance and the strict ergodicity of y, the following
theorem about the A can be proved.

(28)

Theorem 32%4: Given a strictly ergodic measure &
on 8. For each one-dimensional representation Q of
H, the representation A of @ corresponding to Q via
(28) is irreducible, infinite-dimensional, and based on
. Two such representations of @ for different
are not necessarily inequivalent. There always
exists at least one such representation: Take for
 the identity representation of H.

In applying the prescriptions above to Cases (A) and
(B), we shall give detailed results only for a subclass
of irreducible representations of @. This subclass
consists of the so-called physical representations,
which we now define.

For case (A) any representation (irreducible or
otherwise) of @ or of N in which the representatives
of the operators [0,x] are exp(2mir)], where ] is the
unit operator in the carrier space of the representa-
tion, is termed physical.2 For the definition in case
(B), we replace A by A The physical representations
are the only ones that can occur in the physical state
space £, since we see from definition (14) [respective-
ly (16)] that these operators are just multiplication

by the respective phase factors.

The physical irreducible representations of N are
those whose characters (25) have { =1 Jor { =1 —
I2/nin case (B) if 12/7] < 1]. They form a subset of
N that we denote by ®. For case (A) the set @ is the
infinite line X = {#,1| — © < k < o} and for case (B)
the circle $1 = {k, 1|0 < k < 1}, In both cases ® is an
invariant set under the action of H,and so consists of
a union of whole orbits, the so-called physical orbits.
For (A) we have X = 0871, comprisin% a single physi-
cal orbit. For (B) we have 8! = U;,;0l%.1; since [¢n]
is irrational, we know from earlier discussion that
this is a union of a nonmeasurable set of (countably)
infinite physical orbits. In-dealing with physical
representations we drop the superscript { = 1, writ-
ing 8 for the circle and O[]} for the orbits.

The invariant set @ is in both cases a Borel set of N,
Ergodic H-invariant measures concentrated in ® are
therefore defined, and can be classified as measures
on @ into transitive (concentrated in the physical or-
bits) and strictly ergodic. We call them physical
measures, It follows easily from Theorem 1 and (26)
that an irreducible representation of @ is physical if
and only if it is based on a physical measure. Thus
we deal in detail only with physical measures. For
the two cases in turn:

(A) The only physical measure is the one concentrat-
ed on the single physical orbit, i.e., Lebesgue measure
dk on X. From X we choose x = x9:1 of (25a); here

H, = E and has only the trivial irreducible represen-
ta)iion. The corresponding allowed representation of
L, = N is 40,1 jtself, The coset space is Q/N = H =
{[Dya,,0]} from (21a) (where 7, replaces v,). The or-
bit is therefore parametrized by 7,(— ®© < 7, < ®),
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which we can check is related to the earlier para-
meter k2 by k = {n7,. From the prescription (27)
above, the representation A of @ induced from %01
has carrier space £(X,dk) = L2(R), i.e., the space of
square-integrable functions on the infinite line. Using
(27) we obtain

Alviay + vpa,, N]f(R) = g(k) l

) . 29)
g(k) = €27 exp[—2mi(k + 3&nv,)v, If (b + Enw,) § (
for all f(k) € L2(R), where we use the parameter k
rather than 7, for convenience. From Theorem 2, A
is the only irreducible representation based on the
measure dk.

There is no difficulty in constructing the induced
representations for the nonphysical measures. There
is one, similar to (29), based on each 0¢t(¢ = 0). For
each 0% where H, = H,there is a one-dimensional
representation based on 0% for each one-dimensional
representation of H.

(B) The physical orbits are 0l<] ¢ §, The physical
measure u% concentrated in Olx] assigns unit mass
to each point of 8§ with k-coordinate in the set [k]: The
measure of any Borel set & in the circle § is ul«l(g) =
number of points of the orbit in §. For y = x«1 € 9l«]
we have Hx = F and L = N, with one allowed repre-
sentation x*.1, Since /N = H = {[ma,, 0]} from (21b)
(where m replaces nz), we can parametrize the orbit
with m. The single induced representation for this
orbit we denote by Al%!;its carrier space is £(Ol«!
ubely = l,,the space of square-summable sequences
{f(m)}, and using (27) we have

A" [nya; +nya,,0,1{fm)} = {gm)},
gim) = 2" exp[—27i (k + Enm

+ &y, If(m + ny).

(30)

Therefore, for each physical orbit of S there is, from
Theorem 2, one infinite-dimensional irreducible
representation A["]; Theorem 1 (last sentence) en-
sures that the representations corresponding to dif-
ferent orbits are equivalent,

For the strictly ergodic Lebesgue measure dk on 3,
we construct physical irreducible representations of
Q according to the prescription (28). Their carrier
space L2(N, u) in this instance is L2(8), the space of
square-integrable functions on §. The one-dimen-
sional representations of # are Qf = {exp(— 2mipn,)},
0 < p < 1,and the corresponding representations of
Q, which we denote Alrl are given by

Z&[p] [nlal + nya,, }\j]f(K) = g(x),
g(k) = €™ exp[—2mi (kn, + pny (31)

+ %Ennlnz)]f[’( + g"mz)r]’

where f(k) € L2(8). The symbol [p] stands for the

set {(p + £mm), | all integers n} in the cyclic interval
0 < p < 1,i.e.,an orbit of p-values. This labeling an-
ticipates the fact, proved below, that AlPY = AlP2] jf ang
only if p, and p, belong to the same p-orbit. The
representations (31) are irreducible ana infinite-di-
mensional (Theorem 3) and are not equivalent to the
representations (30) (Theorem 1).
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We can find many more irreducible representations
based on the measure dk in the following indirect
manner. In Sec.II we pointed out the different ways
of expressing @ as a semidirect product, according

to the choice of basic lattice vector pair. Let b =
(b,,b,) beanewbasic vector pair, sothatnja; +n5a,=
nb, + nb, for any vector of the a, — a, lattice.
For the new factorization (23), we can go right through
the above procedure, obtaining sets of irreducible
representations of @ analogous to (30) and (31); we
have only to replace % ,,%,,and £ everywhere by
n4,n4 and £¢, respectively. This follows from the dis-
cussion at the end of Sec.II and, in particular,from
the form invariance of the multiplication law under
this substitution. Explicitly, we have representations

A [ analogous to (30) and Z,[,"J analogous to (31),
where
[x]
A’; ["131 + ”232,7\j]{f(m)}
¢ b b
= al%nby +ngby, 1 fim)} = {g(m)},

e2"N expl— 2mi(k + & nm (32)

+ 3£ nd)nl] fim +ny)

for all sequences {f(m)} e I, and

g(m) =

~{p
A,Ep (712, +7njay, 2] f(k)

~[pl
= &,"[n{b} + ”;bz:hj]f(") =g (K),

wik (33)

g(k) =e®™ exp[— 2mi (Knb1 + png

+ 2 ) [ + £ nnd),]

for all functions f(x) € L2(S). The components n4,n$
are related ton,,n, via (22). These representations
obviously reduce to (30) and (31), respectively, when
b=a= (a,,a,) and £° = ¢£.

We have still to justify labeling the representations
(33) and (31) by orbits [p]. We shall prove that

Alp1) =~ AlP21 if and only if p, and p, are in the same
orbit. Consider the Fourier transform that maps
f(k) € L2(8) on to the sequence {f(m)} € I,, where

fm) = [} flk)e2micmax,

Under this unitary transformation, the representation
A%"] of (33) is transformed into the (equivalent) rep-
resentation I', where

Tlrfby + ndby, M H{f(m)} ={g(m)},
g(m) = e®""™i exp[— 2mi(p — £'nm
— s & )n3)f(m +nb).

On comparing I' with th? representations defined in
(32) we see that ' = AY' where b = (b,,b,) is the

vector pair complementary to & and where we have
used the fact that £ = — £°. Consequently we have
Al = A and since we know from Theorem 1 that

A%pl] = A[fz] if and only if p,; and p, belong to the
same orbit [ p;] = [p,], the assertion is proved. We
have in fact proved the following.

Proposition 2: Given the complementary factori-

zations @ = N(b,)® H(b,) = N(b,)® H(b,) for the
two choices b = (by,b,) and b = (b,,b;) of basic
primitive lattice vector pair. Then, for the represen-
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tations defined in (32) and (33) we have A =~ Al ang
A9 = Ald for all orbits (k] € 8. In other words, the
set of representations (32) and (33) obtained from
complementary factorizations is the same;but in
going from one factorization to the other the role of
the strictly ergodic measure is interchanged with the
role of the transitive measures (on the orbits).

The next proposition establishes the equivalence re-
lationships among the A%‘] for varying b.

Proposition 3: Letb = (b,,b,) and b’ = (b},b}) be
any two basic vector pairs. Then A7 =~ Al if and
only if by = b, and [«’] = [«].

Proof: It follows from (22) that the relation be-
tween the vector pairs b’ and b is
2
b: = ]'Z;l Lijbj ’ i= 1’2’ (34)

L,;; integral, LjyjLyy—LjL,; = (£%/6%) =21
for some L;;. Let us take the irreducible represen-
tation A of @ obtained from the factorization @ =
N(,) ® H(b,) and defined in (32). Consider the fac-
torization @ = N(b}) ® H(b,). It follows from Theo-
rem 1 that A[,',‘] must be based on some ergodic H-
invariant measure on N (b’;)(which will be physical),
and to find this measure we determine the restriction
AL N(b}) of the representation to N(b}). For any

element [7b}, ;] of N(b}) for 7 an integer, we have,
using (32) and (34),

Ay by 2 )} = {g(m},
g(m) = 2™ exp[— 2mi(k + £Pnm (35)
+ 36 L)Ly rlf(m +7Ly,)

for all { f(m)} € l,. By inspection, we see there are
two cases:

(@) L ,, =0: Then the only solutions of (34) con-
sistent with the half-plane restriction on the basic
vectors all have L, = 1 and, consequently, bj = b;.
Furthermore, from (35) with L;, = 0and L,, = 1,it
follows that Y | N (b’;) is equivalent to a represen-
tation A of N{b}) of the kind (26), where p is the ato-

mic measure u¥ concentrated in the orbit |k|. Since

we know there is only one irreducible representation
of @ based on each orbit, we must have Al = AlK]
when (and only when) [«’] = [«].

() L, =0: From (35),the space I, decomposes
into a direct sum of | L,, | subspaces each invariant
under N (b}). In fact,l, =@ 2Ll 1{9), where 159
consists of all those sequences {f(m)} which have
zeros everywhere except for m = s + uL,,,s a fixed
integer with 0 < s < [L,, |, and # running over all
integers. Let us consider the operations (35) restric-
ted to the subspace lés) . We can rewrite any vector
of I{) as a sequence’g = {g@)} withg()=f(s+uL,,).
Then from (35)

Al oy Hg @) = {r@)},
h(w) = e2 " i[a + 7)/a@))gw@ + ), (36)
a(u) = exp|— 2miLyjuk + £0ns + 5L, u)].

Under the unitary transformation of 1§ onto L2(8)
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that maps {g )} onto g(8) with 8 (0 < g < 1) the cyc-
lic coordinate for § and

g@) =2
% =-00
the representation (36) of N (b}) is transformed into
the representation v, where

y[rby,A)g(B) = 2T g2 BT g ().

e2ﬂi6ua(u)g(u)’

Evidently,y is equivalent to a representation A, of
N(b}) of the kind (26), where p is the (strictly ergo-
dic) Lebesgue measure df on $. The argument is the
same for each subspace 1§, so that altogether
ABINW,) =Ly, | A, for p =dB. From the last sen-
tence of Theorem 1 we conclude that A% # Al for
all [«’]. The two results (a) and (b) prove the propo-
sition.

These propositions establish the equivalence relation-
ships among all the representations of the form (32)
and (33). Let us say that two basic vector pairs b and
b’ are equivalent if by = bj,and write [0] to denote an
equivalence class of basic vector pairs. From the
Proposition 3, Al and ALY are equivalent represen-
tations if and only if & and b’ are equivalent vector
pairs. Therefore we will write A} to denote the
equivalence class of representations, individual mem-
bers of which are obtained by taking any b € [b] (and
any k € [k]) in (32). As a consequence of Propositions
2 and 3 we have

Proposition 4: The irreducible representations
Al of @, for the different equivalence classes [b] and
the different orbits [«], are mutually inequivalent and
form the complete set of inequivalent representations
defined in (32) and (33). We note that there is one
equivalence class [b] for each choice of b, as the
shortest lattice vector in its direction (in the allowed
half-plane).

Returning to the original factorization of @, with nor-
mal subgroup N = N(a,), we ask for the (physical)

measure classes on which the different AEﬁ of Propo-
sition 4 are based. When [b] = [a], Al is, of course,
the equivalence class of representations exemplified
by (30) and based on the orbit [k] € 8. For any other
[b], we find that

A UN =[1,1A,, p=dcons,
where the integer l;, is as in (22). This relation is
obtained by the argument of part (b) of the proof of
Proposition 3, with &’ = a. Hence we have the follow-
ing proposition.

Proposition 5: The irreducible representation
Abﬂ of @ is based on the transitive measure concen-
trated in the orbit [«] in § when [b] = [a] and on the
strictly ergodic measure dk on $§ when [b] # [a].

Thus there is, for each [«],a denumerable infinity of
different irreducible representations based on dk,
one for each choice of b; # a; in the allowed half-
plane. For the particular case b; = a,,i.e.,[b]=[a],
the equivalence class of representations AE;{ is the

one exemplified by AP of (31),for p = k.

For completeness, we should say a word about the
nonphysical irreducible representations of . These
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are based on measures concentrated in the circle

8¢ € N. For |¢n| irrational, the analysis is exactly
as for the physical representations. When |{7]| =
m/M is rational, the only measures are the transitive
ones based on the orbits 0%.¢(0 < k < 1/M), as we
have seen. For each orbit there is, following Theo-
rem 2, one induced representation for each irredu-
cible representation of the isotropy group HX. Since
Hx is commutative, its irreducible representations
are one-dimensional; then the induced representations
are, from definition (27), all of dimension M, the index
of H* in H. These nonphysical representations of @
for |¢n| rational are isomorphic with the physical
representations that one finds for a “rational” mag-
netic field ' = ¢7n.

We conclude by writing down the representations of
G = P x @ for the two cases G = Wand G = Tn and
by summarizing the main results of the section.

Summary: (A) The group W is of Type I. The
complete set of physical irreducible representations
are the Kronecker products

A=A o<k, < o (37a)
of the factors (24a) and (29). More explicitly, for the
element [v,A] we have

sk v =e "% Alv a, + vja,,0 ], (370)
where the carrier space is LZ(R) and the expression
for the second factor is given in (29). All these rep-
resentations are infinite-dimensional,

(B) The group T, is not of Type I for irrational 7.
The identification of all the irreducible representa-~
tions appears to be an unsolved mathematical prob-
lem for groups that are not of Type I. In the case of
T, this is true not only for all the irreducible repre-
sentations, but also for the subset of physical ones.
Of the latter, those we have found are the Kronecker
products
K3,lK
A =
of the factors (24b) and (32), Here [«] is an orbit in
the circle $ of unit circumference, and [b] is an equi-
valence class of basic primitive lattice vector pairs.

More explicitly, the representation A'EE]' [l is carried

by the space [, of sequences {f(m)} and is given by

X 3 x AEZJ] » 0<k,Kky<1 (38a)

A “nia; +n,3, + naaz,x; 1{ f(m)}

K3,[K]

= Ay [m8by +nbb, +ngag, {f(m)} ={g(m)},

| | (38b)
e27iN g TR Gt omite + £omm

+ 3£" )] f(m +ny),

g(m) =

where n? and n2 are related ton, and n, via (22) and
n 5 is the same whatever the choice of . All the rep-
resentations are infinite-dimensional.

If we repeat the calculation with basic vector trios
(c,,c5,a3), where the ¢; — ¢, plane does not coincide
with the a; — a, plane, no new representations are
obtained. This is shown in Appendix A.

The representations for [b] = [a] and [b] = [@] in case
(B) were given by Opechowski and Tam.4 We can now
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answer two questions posed by them in Ref. 4 p. 545.
Question (1), in our terminology, asks whether for

[b] = [a] the representation (38) is independent (to
within equivalence) of the member of the orbit [«]
from which A%';]] is induced? The answer is yes,from
Theorem 2 of the general (Mackey) theory. Question
(2) asks whether the set of representations (38) for
[b] = [a] is the same, apart from equivalence, as the
set for [b] = [a]. From our results (Proposition 4)
the answer is no.

IV. REPRESENTATIONS IN THE STATE SPACE

In this section we examine the nature of the represen-
tations carried by the physical state space £ = L2(R3)
for the two invariance groups we have been dealing
with in cases (A) and (B), namely W for the potential-
free system and its subgroup T, for the system with
irrational field n along a lattice vector.25 We should
remark that Bentosela26 has made a detailed study of
this problem for case (C) of a rational field along a
lattice vector,from a somewhat different point of
view.

From the beginning, we shall express position and
translation vectors in terms of any of the possible
basic lattice vector trios (b;,b,,a;) we have intro-
duced, the pair b = (b;,b,) being related to a= (a,,a,)
as in (22). Thus, take an arbitrary but fixed such

trio for the following. Then, as a generalization of

{4) and (6), we write

b b _ b b
r=xyb; + X3b, + x3a5, vV=0v7by + Vb, +vgjag,

t=nf; +nlb, +nja;. (39)
(The third components have no superscript since they
do not depend on b.) A given group element [v, A] of
W or [t,A;] of T, retains precisely the same form as
in (14) or (18), respectively, except that we make the
replacements x; = x};v, - vl;n, > nl({i =1,2) and
¢ > £b wherever appropriate. The respective multi-
plication laws (15) and (17) also retain the same form
with the same replacements, as was mentioned at the
end of Sec.II.

For our purposes, the most appropriate way of de-
composing £ is in terms of the so-called Landau
functions, which are continuous eigenfunctions of &

in the potential-free case. They are not square-integ-
rable, and the decomposition involves direct integra-
tion.

The Landau functions will be defined relative to the
framework of basic vectors (b;,b,,a5), and for this
purpose it is convenient to introduce an auxiliary
cartesian coordinate system attached to the vectors.
We write r = {x,y,2), with the positive z axis along
a5, the x axis in the a; — b, plane directed so that b,
has positive ¥ projection, and the y axis making the
system right-handed. Then the Landau functions are
denoted |7,k4%), and given by

(r|l,kg, k), = A(l, k4, k) exp{[@2Tik,2)/a,]

—ixx(Gy — Bu, (x¥/2(y — B)),  (40)
where %, is the /th Hermite function, x = |eB| /ic,

B = yk, + Ok withy and 0 constants independent of
the wave vectors, and A(l, k5, 2) is a normalization
constant. This last is chosen to give convenient nor-
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malization and transformation properties to the Lan-
dau functions. The precise definition of 8 and A(l, %,
k) are found in Appendix B. Except for details depend-
ing on the lattice vectors, the functions (40) are those
given by Johnson and Lippmann,27

Of the labels in |1, k4, k), the first designates the
Landau level /,and k5 and # are dimensionless wave
vectors corresponding to propagation in the a5 and by
directions, respectively. For any fixed b, the set of
functions {11,k 4, k), | L = 0,1+ 0;—w < kg k < ©}
satisfy the relations of completeness and closure28

ol Rg, kIR R = 0,00k —kY)O(k — k'),  (41a)

o0

?off': (L kg, k) ydkydk (L kg, k| =1, (41b)
where, of the delta functions, 6,, is the Kronecker
function and the others are Dirac functions, and ] is
the unit operator in £. We add to these relations the
overlap integral between Landau functions defined for
different basic vector pairs b and 6’:

b(l,k3,kll’,k§,k'>b,

=0, 00y —kt) Lkg, k| Lk k), . (42)
Here (i) if [b’] = [b], then the kernel (I, k4, k|1, kg, k')
is equal to 0(k — ') and (42) reduces to (41a), and (ii)
if [b’] = [b], then the kernel is a bounded function con-
tinuous in £ and %’ (for each I and k;). Relation (42)

is derived in detail in Appendix B.

In accordance with the properties (41) of the Landau
functions, we can decompose £ as

£-® ;’io [ 9@, ky)dksy,

M, k) =@ [ e 1, kq,R),} dr,

(43a)

(43b)

where {(r|1,k4,k),} is the one-dimensional space
spanned by the corresponding Landau function. The
constituent spaces M (I, %) in (43a) are the eigen-
spaces for X in the potential-free case, correspond-
ing to the continuum eigenvalues &(I,k ;) = (#2k%/2m)
+Ew( + 3);w =| eB| /mc, respectively. The decom-
position (43) is valid for any choice of b.

The Landau functions transform under the group ele-
ments [v,A] of W as

<l‘|[V,)\]| lyks’k>b
= e2miA exp[— 2mi(k v 5 + kvl — 3 EbnLvY)]

X (rll kg k — £, (44)
where to obtain this expression we have used (14)
adapted to the vector pair b as described above, to-
gether with (5), (39), and the definition of the constants
in the Landau function (40), to be found in Appendix B.
The transformation under the elements [t,1;] of T,
are found simply by restriction of (44) to T,. We see
from (43) and (44) that the spaces M(, k) are stable
under the operations of W and T, ,and therefore in
both cases the analysis of the representation carried
by £ is reduced to study of the representations in the
M, k3). Thus we shall be dealing in the following
paragraphs with a constituent space M(l, k) for fixed
values of [ and k3, and these two labels will be omit-
ted wherever possible. The constituent space will be
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denoted M, and relations (41), (42), and (43b) are re-
placed by

M=® [ {xlk),}dk,

kIR, =60k — k'), (45)

Lo Ry ak (k| =1,

where I is now the unit operator in 9 and only the
label k is retained in the Landau function. Let (r|¢)
be any vector in 9; then from (45) we have

(rlg) = [ (x 1Ry ko) dk, (46)

where the Fourier transform function ,(k|¢) is
square integrable in B(— o <% < ®), We shall denote
the (Hilbert) space of Fourier transforms ,(k|¢) by
9 ,. The Fourier transforms of the same (r | ¢) in
two spaces I, and M ,, corresponding to different
vector pairs b and b’ are related by

bR 10) = [0 (kIR Y, (R | 9)a, (47)

where the kernel ,(k|k"),, is as defined in (42) with
only the labels 2 and ®’ retained; it is given explicitly
in Appendix B. We note from (46) and (47) that the
assignments (r [¢) = (& | ¢) and (k| o) = , (k' | @)
for all |¢) are unitary mappings of 9 onto 9N, and
I, onto N ,,, respectively.

Let us now take the two cases in turn:

(A) We denote by I' the representation of W carried
by 9. It is defined directly by (44) (for fixed ! and
k), and under the unitary mapping (46) it is trans-
formed into the equivalent representation I', in 1L,
given by

sk Iv,A]l¢) = e?"™ exp[— 2mi(kgv g + kvi
gt meg) ok + e mwgle)  49)

for all ,(k|¢) € M,. The I', for different b are all
(unitarily) equivalent via the mappings (47), and on
taking b = a we see, by comparison of (48) with the
representation of W defined by (37) and (29), that
I'=>T,= Ak, [We recall that in (29) the label b = a
is understood.] In particular, therefore, I is irredu-
cible.

(B) The representation of T, carried by I, denoted
by v, is evidently subduced from I" of W. It is, how-
ever, no longer irreducible; we shall show that it is a
primary representation of 7T, and can be decomposed
into irreducible constituents in an infinite number of
different ways such that no two decompositions have
a constituent in common. This proves it is not of
Type 1.29 We first establish these different decompo-
sitions. The representation y is equivalent to the
representation y, in 9, obtained by restriction of
(48) to the element [t, ;] of T,: Thus

skl 2] ) = e2™N exp[— 2mi(k g,

+kny + 50 ming) Sk + Enagle)  (49)
defines y,. We observe that the discrete nature of

the translations in (49) allows us to make the decom-
position

M, =@ f§" M, E)dk, v, =@ f{" v, E)ak, (50)
where 9, (k) is the space [, of sequences {b<k +m|
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¢)} for which 23, | ok +nm|¢)|2 <o and k is res-
tricted here to the interval [0,|n]]. The space 91, (k)
is stable under Tn and carries the representation de-
noted by y, (k) in (50). The form of v, (¢) follows from
(49), and on comparing it with (38) we observe that
vol) = a5 kg =(ky),, k=),  (51)
Therefore the constituent representations in the de-
composition (50) are all irreducible. Furthermore,
the decomposition itself depends critically on the
choice of b, or rather on the equivalence class [b].
Indeed, it follows from (51) and Proposition 4 of Sec.
III that no two decompositions (50) possess an irre-
ducible constituent in common. In other words, the
representation y, which is equivalent to y, for each
b via a unitary mapping (46), is equivalent to an infi-
nite number of decompositions (50), one for each
class [b], such that the irreducible constituents in one
decomposition are inequivalent to those in all the
others. This nonuniqueness of decomposition into
irreducible constituents is a manifestation of the fact
that T, is not of Type I.

A further property of the decomposition (50) for a
fixed b, is that the irreducible constituents are “in-
extricably mixed” in such a way that there are an
infinite number of inequivalent ones contained in any
interval however small, in the integral over 2, This
is due to the erratic way in which the orbit [«] in (51)
depends on k = (k),. We cannot “disentangle” the
representations by grouping the equivalent ones to-
gether, since, as we saw in Sec. II, the distinguishing
labels would have to be a nonmeasurable set of the &,

By availing ourselves of the transformation of 9,
onto M inverse to (46), we can find the decomposition
of MM equivalent to (50). It has the same form as (50),
the constituent space labeled by k(0 < k < |n]) carry-
ing a representation equivalent to (51), and consisting
of the space of functions (r |®) on R3 of the form

]
(rl@)= 2 (rlk+nm), b +nm|¢) (52)
m=—0o0
for all sequences {,,(k +nm| P} € M, (k). This con-
stituent space is a Hilbert space, with scalar product
of |®,) and |&,) defined by

<(1)1I€I>2>= 5_:0_) <¢1tk +Tlm>b b<k +77m|¢2>-

The proof that (r |®) exists as an everywhere-defined
and bounded function on R 3 is found in Appendix B.
Reintroducing all the labels for a moment, this means
that the infinite set of Landau functions {r |7, ks,

k +nm),lm = 0,%1,...,+®} span a space of wave-
functions carrying the irreducible representation
A’[‘g]'['d of T,, where k5 = (k3), and k = (k), as in (51).
Opechowski and Tam# have made this observation
for the case b = a and a crystal with orthorhombic
symmetry.

To prove that y is primary, we shall use the fact that
a representation is primary if and only if its commut-
ing algebra is a factor,i.e., has a center consisting of
multiples of the identity operator.? (We recall that
the commuting algebra of a representation is the al-
gebra of bounded operators in the representation
space that commute with each operator of the repre-
sentation, and that its center consists of those opera-
tors of the algebra that commute with every operator
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of the algebra.) Consider the representation y, in
IM,. Let A be any multiplicative operator in I, de-
fined by

b<k|A|¢>= a k) b<k|¢’>,

for all (k| ) ¢ M, where a (k) is a bounded Lebes-
gue-measurable function on the infinite line with
periodicity 7. It follows from (49) and (50) that A be-
longs to the commuting algebra of y,. Any (bounded)
operator in the centre of this algebra must therefore
commute with all operators of the kind (53), as well
as with y, ;from a standard result on multiplicative
operators30 and from Schur's lemma applied with
reference to the decomposition (50), it follows that
such an operator is then itself of the kind (53). The
center is therefore contained in the set of operators
A. An analogous conclusion is, of course, valid for
any choice of b. Let us take &’ so that [b’] = [b].
Since the center of ¥y, must be mapped onto the cen-
ter of y,,, under the mapping (47) of 9, onto I,

we have that

ofk) b<k|¢)> = fo:o b<klk,>bl a’k’) bl<k'l¢> dk';

for all ,(k|¢) € M,. Here o’ (k') is a bounded Lebes-
gue-measurable function on the infinite line with
periodicity 1, which defines the image of A in I,/
via an expression analogous to (53). We now show
that (47) and (54) imply that @ (k) = a’(k’) = const for
all £ and k', using a particular property of the kernel
Sk1E",, . Consider any operator [v, 0] belonging to
the group W; from unitarity we have the invariance

b<k|k'>b/ = b<k|[V, O]I[V, 0]] k') b’

of the scalar product. Making this substitution for
the kernel in (54) and using (44) for the transforma-
tion of the Landau functions under [v, 0], we can re-
write (54) after a little manipulation as

alk —gnw) (klo)y= . (klk),
X al(kl _ gb'nvbf) b'<k,,[ ¢> dk'.

Now choose v so that v =u, v} = 0 for any real u;
from the equality v{'b; + v”’b' =v%b, + v}b, and

the relations (34) between b and b, we have vy =uL,,,
where L, # 0 since [b'] = [b]. Comparing the last
expression with (54) we obtain immediately that

afk +n)=ak) (53)

(54)

al — L u) = ak)

for all u. Consequently o (k) is a constant function,
and likewise a’(k’) is equal to the same constant func-
tion: The center consists therefore of constant func-
tions only,and y, ~ y,, ~ y is primary. It is not of
Type I, as we have seen, because of the nonuniqueness
of its decomposition into irreducible constituents des-
cribed earlier.29

It is interesting to note the relationship between the
representations I and y of W and T, respectively,

carried by the same space 9. In fact,from the re-
sults under headings (A) and (B) above, we can write

k. k
y=TiT, =%l T, =[x2xall T,

=xx[al T.l, k3= (k3),,

where we have used (25) and (37). The representation
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x " of Pg is subduced from x*s of P, ,and likewise
Al T, of Qg from A of @. We can derive from these
relations, together with (50) and (51), the following:

Proposition 6: The representation of T, subduced
from the irreducible representation A™ of W is pri-
mary and not of Type I. Two such representations
subduced from A% and A% of W, respectively, are
equivalent if and only if (¢%), = ( 3),,and we write
A3 = AR | T where k= (kg ) The primary rep-
resentation can be decomposed mto irreducible con-
stituent representations of T, as

Afs e [T pfkap k= @),
for any choice of b;for b and b’ such that [b’] = [b]
the corresponding two decompositions have no irre-
ducible constituent in common. Furthermore, if A=
Al T, is the representation of @p subduced from the
1rreduc1b1e representation A of @ 4,then A is a pri-
mary representation not of Type I and

~ [inl
A= [T Al aR, k= @),,

where inequivalent b give rise to different decompo-
sitions as in the last paragraph.

In Proposition 6, the decomposition of A" is formal
in the sense that it relates equivalence classes of
representations; those of (37) and (38), respectively.
That the decomposition can be realized by selecting

a member from each equivalence class is exemplified
by (50). The second part of the proposition, relating
irreducible representation classes of the subgroups

Q@ of (19) in the two cases (A) and (B), follows d1rect1y
from the first part and from the definitions A% =

ng X A and A [b] KJ__XK3 X A[ of (37) and (38).

Returning to a consideration of the whole state space
£, we let § denote the representation of either group
Wor T, carried by £. Then, we conclude from the
above analysis that, corresponding to the decomposi-
tion (43a) of £, we have

2=-@® 5 17, ky)dr,,
=0 ©

L jak (A)
(L, kg) = {A“;Ks = (k5),” (B)

(55)
where (1, k) is the representation in M (l,%;). For
case (A), the constituents are the irreducible repre-
sentations (37); for case (B), they are the primary
representations given in Proposition 6. Whereas the
set of irreducible constituents is uniquely determined
in case (A),for case (B) the further decomposition of
2 into irreducible constituents is highly nonunique,
as follows from the analysis in this section. How-
ever, as was remarked at the end of Sec. I, the central
decomposition of , i.e.,the decomposition into mut-
ually inequivalent primary representations, will be
unique in both cases. It is obtained from (46) and (35)
by combining in a direct sum all those constituent
spaces (I, %k,) carrying equivalent representations.
Thus, for case (A) the central decomposition of Q is
given by

L =@ [ Meg)dk,,
Q=0 [ Qk)dk,,

M) = @ i}o ML, 5)
Qkz) = 0 Ak
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and for case (B) by
£ =@ [ My)dx,,
M(kz) = D Z()) 20 M(lky+m), (56)

m=-

1=
Q=@ [y Qrg)drs, (kg =0 A,

Here, the notation ©y means an infinite direct multi-
ple of the representation y. Whenever y is primary,
then w1y is primary and of the same Type as y,? so
that the constituents in these two decompositions are
indeed primary. Also, the primary constituents ©A*3
for case (A) are of Type I, as is to be expected,
whereas the primary constituents © A*3 for case (B)
are not of Type I.

V. SUMMARY AND REMARKS

The invariance translation operator groups for the
Hamiltonian of a Bloch electron in a uniform magne-
tic field have properties that are certainly unusual
for systems encountered in solid state physics. As
we have found in Sec.II, they are of Type I only when
the components of the magnetic field relative to the
lattice vector directions are rational numbers in
terms of natural flux units. For these “rational”
fields with Type I groups, the group theoretical analy-
sis presents no unfamiliar aspects.1-4,26 The irre-
ducible representations, for instance, can all be clas-
sified and are all finite-dimensional. For the “non-
rational” fields, however, the situation is entirely dif-
ferent. We have confined our analysis to the case
where the (nonrational) field is along a lattice vector,
but the general features will be the same for the field
in an arbitrary direction. It turns out that here the
group has an infinite number of classes of physical
irreducible representations, all of infinite dimension.
They are summarized at the end of Sec.Ill. There
may be more; since the group is not of Type I in this
case, there is at present no method available for de-
termining them all with certainty. In any case, it is
just these representations of Sec.III that occur in the
decomposition of the representation carried by the
state space £ into irreducible constituents, and we
are therefore able to analyze this representation ex-
plicitly (Sec.IV). The decomposition into irreducible
constituents is far from unique and can be accom-
plished in an infinite number of different ways. This
is a manifestation of the fact that the group is non-
Type I and shows that the concept of irreducible rep-
resentation plays a much more ambiguous role here
than in the usual applications of group theory to quan-
tum systems. By contrast,the central decomposition
(56) into disjoint primary constituents is unique, in
the sense that the set of different primary represen-
tations that occur is unique; and, therefore, it is the
primary rather than the irreducible representations
that appear to have the greater significance, in the
physical as well as the mathematical context. These
primary constituents in (56) are not of Type I, as is
proved in Sec.IV;and, in fact, Grossmann has shown
in an independent study that they are of Type IL.25
Grossmann's demonstration is an abstract one (using
the properties of symplectic forms on phase space);
our method is complementary to his in being more
concrete, as we use explicit decompositions of the
primary representation into irreducible constituents
(whose carrier spaces are spanned by the well-known
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Landau functions for a free electron in a magnetic
field).

When we come to consider the spectrum of the Hamil-
tonian, it is again the primary rather than the irredu-
cible representations which appear to be the most
important. For, as described at the end of Sec.]I,
there is a natural decomposition of X that corres-
ponds to the central decomposition of its invariance
group, which for the case of (56) will have constit-
uents which we can label 3(k3) (0 < k5 < 1) in an evi-
dent notation, where JC(x ;) is an operator in I (k).
We are then left with the difficult problem of finding
the spectrum of ¥ (k3); what information on this spec-
trum can be deduced from the fact that 9 (x;) carries
a Type II primary representation of the invariance
group of ¥ remains to be investigated.

The enlargement of the invariance groups to include
rotational symmetries will make no essential differ-
ence to the general features of the analysis in this
paper, since the enlarged groups are only finite ex-
tensions of the original ones.

There are, of course, other physical problems besides
the energy spectrum for which the implications of

the unusual properties of the groups need to be
studied: the behavior of the selection rules, for ex-
ample. Although these physical questions are not
dealt with here, this paper is intended to be a contri-
bution to laying the necessary basis for their inves-
tigation.
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APPENDIX A

We show that a representation of T, that is analogous
to (38), but constructed with reference to a basic pri-
mitive lattice vector trio (c,,¢,,a;) where the

¢, — ¢, plane is not (necessarily) coincident with the
a; — a, plane, is equivalent to one of the set (38).

The group Tn,therefore, is now factorized as

Q' =N(c1)@H(cz) (A1)
where P is as in (19b) and N(c,), H(c,) are defined
analogously to (23). As in Sec.II, the domain of ¢4
and c, must be restricted in order to obtain a one-
to-one correspondence between the factorizations of
Q’ and the pairs (¢4, c,) in the same plane. This is
done as follows. For a given basic vector trio (c,,
€y,25), there is always a uniquely-determined basic
vector trio (b;,b,,a;) withb,,b, in thea; —a,
plane and

Tn:PXQI’

b, =¢y + 723, by =c, + 752, (A2)
for 74,7, uniquely determined integers. We restrict
the domain of ¢; and ¢, so that b; and b, lie in the

allowed half-plane defined in Sec.II. Then,to each
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allowed ¢ = (c,, C,), there is a unique allowed b =
(b,,b,) and a unique pair of integers r,,7, defined by
(A2). Let

t=nge; +nfe, +na; =nlb, +nib, +nza;  (A3)
be any vector expressed in terms of the two vector
trios (the third component with respect to the first
trio bears the label ¢,because it now varies when the
vector pair ¢ moves out of the a;-a, plane). Then,
using (A2) and (A3) we have

n =nl, n§=nj,

c —pt 3 b
ng=n4+rpm +r,ng,

50 = gb’ (A4)
relating the components and signs of the two vector
trios.

Applying the general procedure of Sec.Il to the fac-
torilz]ation (A1) of T, we construct a representation
AT of T, with carrier space I, in analogy with (38),
where

atsld[ng e; +nge, +ngaz, A ]{f(m)} ={g(m},

and g (m) is given by the third line of (38b) with the
replacement of n4,7n4,n 4 and £° by n§,n§,n§ and £°,
respectively. If we use Eqs. (A3) and (A4) to express
both sides of this relation back in terms of #4,n4,n,
and £%, and then make the unitary mapping {f(m)} -
{n(m)}; h(m) = exp(— 2mik ,7,m)f(m) of I, onto itself,
we verify with a little algebra that A% is trans-
formed into the representation A%3l<*"1<s1 of the set
(38). Here [b] is the equivalence class to which the b
of (A2) belongs. ‘Therefore the choice of ¢ as vector
pair gives no new representation.

APPENDIX B

Here we derive several properties of the Landau
functions (40) used in Sec.IV. We repeat the defini-
tion in more detail. The Landau function {r|l, %, #),
is defined relative to the basic vector trio (b;,b,,a3)
and expressed in terms of the cartesian coordinates
(x,y,z) attached to these vectors, where we recall:
The z axis is positive along a4, the x axis is in the

a; — b, plane directed so that b; has positive x pro-
jection, and the ¥ axis makes the system right-handed.
This means that

az, =a3> 0, a3, =az, =by, =0,

b,,>0, by, =0

y 2

(B1)

where ag,,b, y» €tc. denote the projections of the
basic vectors along the Cartesian axes, in an obvious
notation. The full definition of (42) is

(rll, kg, By, = Al k4, k) exp{[(2nik2)/a,]

— ixx(zy — B)u, (X2 (v — B)),
B=(by,/En)(k3b,,/a3) — k], (B2)
Al kg k) =it x/4@QILITY2 by a5) V2 exp[— ik, k3)],
Ok, k3) = (B/by,)[3XxBby, + Tk, ,/as5)].

X= I eBl/(ﬁC),

All quantities in (B2) are well-defined in virtue of
(B1). For the Hermite functions, we have
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u,(€) = exp(— 5¢2)H, ) } , (B3)

2w, @uyp @) ag = 201 w1/25,,

where H, is the /th Hermite polynomial. The magni-
tude of A(l,k3,%) in (B2) is chosen so that the func-
tions are normalized as in (41a), and its phase is cho-
sen so that they transform conveniently under the
group operations as in (44). There are two parts to
this Appendix.

I. We show that the functions (52), which we write
here as
o0
(rl®)y= 27 a,(rl|lksk+1m),,
m=-c0 o

2 la,lz2=c2< o,

m=-00

exist as everywhere defined functions on R3. Here ¢
is a real positive constant. From Schwartz's in-
equality we have

|<r|¢>tsc( >

m==00

(5

[{r12,k,,k + nm),,l-?)l/2 <cg

X2y — e, — cm)V2),

where ¢, C,,and c; are real constants depending only
onl,k 3,% and the basic vectors. In the second step
we used (B2). The infinite sum in the square brackets
is uniformly bounded in y, as follows from the defini-
tion of #, in (B3). Hence(r | ®) exists for allr € R3
and is uniformly bounded on R3,

II. We calculate the overlap integral (42) between
Landau functions (r [7,k, k), and (r |I’, k%, k"), de-
fined relative to different basic vector pairs b and d’,
The two sets of cartesian axes (x,y,2) and (x",y’,2’)
attached to the trios (b,,b,,25) and (b}, bg,a,), res-
pectively, are related by

X' =x cosf +y sinf, Yy’ =— xsingd +y cosf,

0<6<m, (B4)

z'=1z ,
where 6 is the angle between thea; —b; anda,; — b}
planes. The restriction on the range of 6 arises from
the half-plane restriction on the basic vectors. Note
that ¢ = 0 if and only if b} = by, i.e.,[0'] =[b]. We
shall write the overlap integral (l,k5, k|l k5, k), =G;
on expressing the two functions in the appropriate ex-
plicit form (B2), the z* = 2z coordinates can be inte-
grated out immediately to give

g = AT kg, R)A (U, kY, k) az Ok — k) J,  (BS)

»

where
J = fRz exp[zix(ry — x'y’) — ix(x8 — x'B")]
Xuy (x1/2(y — BN up(xY/2(y" — B'))dxdy.

Here x’ and ¥’ are related to x and y through (B4).
The star in (B5) denotes the complex conjugate: the
primed functions A’ and 8’ have the same form in the
primed variables ', k%, k' and primed vectors b’
(whose projections b/ ,, etc, are taken with respect to
the primed coordinate axes) as have A and 8 in the
corresponding unprimed quantities in (B2). We now
distinguish two cases:
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(@) [b'] =[b],i.e.,6 = 0. Thenx’ = x, ' =y, and,
using (B3), we obtain

J=2011(m/x)¥28,, 6(B — B').

Substituting in (B5) and using the definitions of the
normalization constants and of 8 and £’ from (B2),
we have

g =270l (b, |05, 1)1 0, 0(k;—E5)0(k — k).

We recover (41a) on noting that, from (B2) and (13),

x = leBl/(ic) = 2nagin/Ql = 2nin{/(®,16,,1). (B6)

Here we recall that the volume || of the unit cell is
independent of the basic vector trio: [Q] = [az*a; X
a,| =lag b, X byl =agh,,|b,,1.

(ii) [6] = [b], i.e.,0 < 8 < 7. Changing the indepen-
dent variables in the integral J from ¥,y to w, w’,
where

w = X1/2 (y'— B')
= x/2 (— % sind + y cosd — B’),

W= Xl/2 (y — B)y

we obtain, with the aid of (B4) and a little rearrange-
ment,

J = x"1 cosect exp{— 3ix[B2 + (8")2] cotd

X X
+ iy[BB’ cosech]} fRz exp{3i[w2 + (w")2] cotd
— iww’ cosect}u, (w)u, (') dwdw’,

To evaluate the integral in this expression, we need
a relation between Hermite functions:

M. H. BOON

f: exp{3i[w? + (w')2] cotd — iww’ cosech}u,(w)dw
= explil(n — 0) + i(am — 36)] (27 sind)/2u,(w’),
B7)
valid for 0 < 9 < 7.31 This relation can be estab-

lished by induction on I, for example, using the re-
currence formula

d

75 [exp(— z 02) 4, ()] = — exp(— 2 wW2)u,y ().
Via (B7) and (B3) in the last expression for J, and
substituting the value so obtained in (B5), the overlap
integral becomes

J=0,,0(ks— kX,

X= (27 csch/xb,by,)Y2 exp[illn — 6) +i(im — 26)]
x expli[o(k, k3) — ¢k k)] (BS)
— $ix[B2 + (8")2] cotd + ix BB’ csch}.

Here the explicit expressions for the normalization
constants have been inserted. On comparing with (42)
we see that X is just the kernel (I k5, |l k5, k%,
[written later as ,(k|k'), in (47)]. Therefore Eq. (B8)
proves (42), and also the assertion that the kernel is
a bounded continuous function in k2 and &', since X
evidently possesses these properties.

An interesting special case is when the crystal is
orthorhombic and when d = ¢ = (a,,a,), b'=a=

(a,, al). Here the two Landau functions represent
waves, with wave vectors k and k’, respectively, pro-
pagating at right angles to each other along two
principal crystal directions, and in a plane at right
angles to the magnetic field. With the aid of (B2) and
(B6) the kernel X reduces in this case to the Fourier
transform

X = (k|ky =il2n/xa,a,)1/2 exp(— 2nikk’/|n

).
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A perturbation theory is developed for self-adjoint operators whose resolvents leave a cone invariant. The
Perron-Frobenius theory may be applied to the perturbed operator to conclude that its lowest eigenvalue has
multiplicity one. In quantum field theory this gives uniqueness of the vacuum for a class of fermioninteractions

different from that considered by Gross.

1. INTRODUCTION

Consider a self-adjoint operator H, acting in the Hil-
bert space ¥. Assume that V is another self-adjoint
operator acting in ¥ and that H = H, + Visalso self-
adjoint. (For instance if V is bounded this is always
so.) A fundamental problem in linear perturbation
theory is to get information about the spectrum of H
from a knowledge of the spectrum of H,,.

The standard approach is the Rayleigh—Schrodinger
expansion in powers of V. The difficulty is that V
must be sufficiently small for this expansion to con-
verge. [For instance, consider the case when i, is an
isolated eigenvalue of H, of multiplicity one. Let d be
the distance from p to the rest of the spectrum, and
let S be the circle in the complex plane with center
B and radius d/2. The projection onto the eigenspace

of H, corresponding to y, is then Fy = — (2n¢)" 1]

(Hy — zyldz. If V is sufficiently small (for instance if
| V|I < d/2), then the expansion (H — z)"1 = (H, — 2)1
200 (— V(HO — z) 1) converges for z on S. In that
case H has an eigenvalue u inside S and P = (— 2mi)!
f s (H — 2)y1ldz is the corresponding projection. Thus
P depends analytically on V; we conclude that p also
has multiplicity one.!]

Any source of information about the spectrum of #
that does not depend on the convergence of this expan-
sion is thus obviously of great value. One such source
is the Perron—Frobenius theory, based on the notion
of invariant cone. The main conclusion of this theory
is that in certain circumstances (often met in quantum
mechanics) the lowest eigenvalue of H is of multipli-
city one, that is, the ground state is unique.

The Perron—Frobenius theory has recently been
applied to quantum field theory in the boson case by
Glimm and Jaffe.2 In a fundamental paper,3 Gross
has extended the theory in a direction suited for
application to the fermion case. Using a representa-
tion of the fermion Fock space due to Segal,4 he has
been able to conclude uniqueness of the ground state
for a class of fermion interactions.

In the present paper we develop an abstract version
of the Perron—Frobenius theory in a form suited for
applications to quantum mechanics. The setting is a
Hilbert space and a given cone in the space; no
special algebraic properties of the space or of the in-
teraction are assumed. The main abstract results
are the perturbation theorems in Sec. 4. This theory
is applied to give uniqueness of the ground state for a
different class of fermion interactions from that con-
sidered by Gross. The main result here is Theorem
4 in Sec. 7.

2. REAL HILBERT SPACES IN QUANTUM
MECHANICS

In quantum mechanics one deals usually with a com-
plex Hilbert space. However, it is worth recalling
that many problems may be reduced to problems in a
real Hilbert space.5 In fact, let W be a complex Hil-
bert space and let 7: W — Wbe a conjugation. That
is, T is an antilinear map with 72 = 1 which is anti-
unitary: (7u, Tv) = (4, v)*. An element u in ‘W such
that Tu = u is called real. The set of all real ele-
ments forms a real Hilbert space 3C.

Now if A: W — W is a linear operator such that AT=
TA, then A leaves the real space invariant. Such an
operator is called »eal (with respect to T). It is easy
to see that many questions concerning the spectrum
of A: W— W may be reduced to questions about the
restricted operator A : 3 - X acting in the real Hil-
bert space. For instance, if Au = Au with A real and
u in ‘W, then Au, = Au, and Auy, = Au,, where u = u; +
iuy and #y and u, are in 3. Thus the multiplicity of
the eigenvalue A may be computed in the real space.

The obvious example is ‘W = L2(M, u) with inner pro-
duct (u, v) = fM u*vdy. Then Tu — u* defines a con-
jugation and X is the space of real functions in L2,

In the nonrelativistic quantum mechanics of particles
there is a conjugation which has a physical interpre-
tation. The Hilbert space for a system of » particles
may be taken to be W = L2(R37, dx) inthe positionre-
presentation. The conjugation 7 is given by Tu(x) =
u(x)*. The interpretation of 7 is most easily seen in
the momentum representation. Let F: W — L2(R3" dk)
be the Fourier transform, which gives the isomor-
phism with the momentum representation. Then the
formula FTF-1g(k) = g(— k)*, g € L2(R3",dk) shows
that T has effect of reversing momenta. Since follow-
ing a process backward in time has the effect of re-
versing momenta, T is called the time reversal con-
jugation. The usual Hamiltonian operators are real
with respect to time reversal.

3. INVARIANT CONES

The notion of a Hilbert cone is an abstraction of the
special case of the cone of positive functions in L2,
For this case Glimm and Jaffe2 have given an elegant
theory; the present approach is in part an abstract
version of theirs.

Definition 1: Let X be a real vector space. A
cone is a nonempty subset X of ¥ such that

ue X, ve X impliesu + v € X; (1)
ue X, az 0implies au € X; (2)
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verge. [For instance, consider the case when i, is an
isolated eigenvalue of H, of multiplicity one. Let d be
the distance from p to the rest of the spectrum, and
let S be the circle in the complex plane with center
B and radius d/2. The projection onto the eigenspace

of H, corresponding to y, is then Fy = — (2n¢)" 1]

(Hy — zyldz. If V is sufficiently small (for instance if
| V|I < d/2), then the expansion (H — z)"1 = (H, — 2)1
200 (— V(HO — z) 1) converges for z on S. In that
case H has an eigenvalue u inside S and P = (— 2mi)!
f s (H — 2)y1ldz is the corresponding projection. Thus
P depends analytically on V; we conclude that p also
has multiplicity one.!]

Any source of information about the spectrum of #
that does not depend on the convergence of this expan-
sion is thus obviously of great value. One such source
is the Perron—Frobenius theory, based on the notion
of invariant cone. The main conclusion of this theory
is that in certain circumstances (often met in quantum
mechanics) the lowest eigenvalue of H is of multipli-
city one, that is, the ground state is unique.

The Perron—Frobenius theory has recently been
applied to quantum field theory in the boson case by
Glimm and Jaffe.2 In a fundamental paper,3 Gross
has extended the theory in a direction suited for
application to the fermion case. Using a representa-
tion of the fermion Fock space due to Segal,4 he has
been able to conclude uniqueness of the ground state
for a class of fermion interactions.

In the present paper we develop an abstract version
of the Perron—Frobenius theory in a form suited for
applications to quantum mechanics. The setting is a
Hilbert space and a given cone in the space; no
special algebraic properties of the space or of the in-
teraction are assumed. The main abstract results
are the perturbation theorems in Sec. 4. This theory
is applied to give uniqueness of the ground state for a
different class of fermion interactions from that con-
sidered by Gross. The main result here is Theorem
4 in Sec. 7.

2. REAL HILBERT SPACES IN QUANTUM
MECHANICS

In quantum mechanics one deals usually with a com-
plex Hilbert space. However, it is worth recalling
that many problems may be reduced to problems in a
real Hilbert space.5 In fact, let W be a complex Hil-
bert space and let 7: W — Wbe a conjugation. That
is, T is an antilinear map with 72 = 1 which is anti-
unitary: (7u, Tv) = (4, v)*. An element u in ‘W such
that Tu = u is called real. The set of all real ele-
ments forms a real Hilbert space 3C.

Now if A: W — W is a linear operator such that AT=
TA, then A leaves the real space invariant. Such an
operator is called »eal (with respect to T). It is easy
to see that many questions concerning the spectrum
of A: W— W may be reduced to questions about the
restricted operator A : 3 - X acting in the real Hil-
bert space. For instance, if Au = Au with A real and
u in ‘W, then Au, = Au, and Auy, = Au,, where u = u; +
iuy and #y and u, are in 3. Thus the multiplicity of
the eigenvalue A may be computed in the real space.

The obvious example is ‘W = L2(M, u) with inner pro-
duct (u, v) = fM u*vdy. Then Tu — u* defines a con-
jugation and X is the space of real functions in L2,

In the nonrelativistic quantum mechanics of particles
there is a conjugation which has a physical interpre-
tation. The Hilbert space for a system of » particles
may be taken to be W = L2(R37, dx) inthe positionre-
presentation. The conjugation 7 is given by Tu(x) =
u(x)*. The interpretation of 7 is most easily seen in
the momentum representation. Let F: W — L2(R3" dk)
be the Fourier transform, which gives the isomor-
phism with the momentum representation. Then the
formula FTF-1g(k) = g(— k)*, g € L2(R3",dk) shows
that T has effect of reversing momenta. Since follow-
ing a process backward in time has the effect of re-
versing momenta, T is called the time reversal con-
jugation. The usual Hamiltonian operators are real
with respect to time reversal.

3. INVARIANT CONES

The notion of a Hilbert cone is an abstraction of the
special case of the cone of positive functions in L2,
For this case Glimm and Jaffe2 have given an elegant
theory; the present approach is in part an abstract
version of theirs.

Definition 1: Let X be a real vector space. A
cone is a nonempty subset X of ¥ such that

ue X, ve X impliesu + v € X; (1)
ue X, az 0implies au € X; (2)
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u € X, —u € X implies u = 0. (3)

Let X be a real Hilbert space. A Hilbert cone XC X
is a cone such that

X is closed; 4

u € X, v e X implies (u, v) > 0; (5)

For allw € X, there exist 4, v € X with
w=u—vand (u,v) =0, (6)

The most important example is the case of the real
Hilbert space ¥ = L2(M, p), where p is a measure in
the measure space M. The inner product is of course
(u,0) = [y uvdp. EX ={u € L2:u = 0 a.e.}, then X
is a Hilbert cone, It is important to notice that in
general this cone has no interior points.

There exists an extensive theory of invariant cones;
however, most uniqueness results are either for the
case of a cone with nonempty interior or for the case
of a Banach lattice.® While L2(M, p) is certainly a
Banach lattice, in the application to fermion systems
the space is not a lattice. In fact, already the space
of self-adjoint 2 X 2 matrices (with the cone of posi-
tive matrices) provides an example where the space
is not a lattice.

In the following we will usually write « > 0 whenu €
X.

Definition 2: Let 3 be a real Hilbert space and
X C I be a Hilbert cone. A vector w =0 is strictly
positive if whenever u >0, u # 0, then (x,u) > 0.

In the example of the space L2(M, p) w is strictly
positive if and only if w > 0 a.e,

Definition 3: Let 3 be a real Hilbert space and
X C X be a Hilbert cone. Let A: X = X be a bound-
ed linear operator. A is positivity presevving f u =
0 implies Au = 0. A is positivity improving if for all
u =0, u=0,Au is strictly positive. A is ergodic if
forallu 20, v 20, u 20, v # 0, there exists an
integer n > 0 such that (u, A7) > 0.

If A is positivity improving, then A is certainly ergo-
dic. Another relation between these two concepts is
expressed in the following proposition.

Proposition I: Let X C X be a Hilbert cone. Let
A: 3 — JC be a bounded, positivity preserving linear
operator. Let A > |lA|, Then A is ergodic if and only
if (A — A)1 is positivity improving.

Proof: The representation (A —A)1 =125,
(A/2)* shows that (A — A)~! is positivity preserving
and that A is ergodic if and only if (A — A)"! is posi-
tivity improving.

The next result is the version of the Perron-
Frobenius theorem we shall need. It should be noted
in connection with the statement of the theorem that
an operator on a real Hilbert space can be positive
but not self-adjoint.

Theorem 1: Let 3 be a real Hilbert space. Let

A: 3 — 3 be a bounded positive self-adjoint operator.

Assume that || Al is an eigenvalue of A. Let X CXbe
a Hilbert cone. Assume that A is positivity preserv-
ing. Then A is ergodic if and only if |A| is an eigen-
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value of multiplicity one and the corresponding eigen-
space is spanned by a strictly positive vector.

Proof: Let A = ||All. Throughout the proof we take
A=0,

Assume first that A is ergodic. Consider w # 0 with
Aw=2xw. Writew=u —vwithu=>0, v20, (u,v) =
Oand set z =u + v. Then z 2 0 and (z, 2) = {w,w) #
0. Since A* is positivity preserving, (w,A"w) <
(2,Anz). Hence we have A™(w,uw) = w,A?u) <(z,A"z)
<A™(z,2) = A™w,w), that is, w,A"u) = (z,A"z), In
terms of u and v this says (¥, A”v) = 0. Since A is
ergodic, it follows that # = 0 or v = 0. Thus we have
shown thatw =0 or —w = 0.

Next we show that if w = 0, then w must be strictly

positive. For if ¥ = 0 and # # 0, then (since A is ergo-

gic) there must exist an # > 0 with A™u,w) = (4, A"w)
0.

To show that A can have multiplicity at most one,
assume the contrary, Then there arew # Oand x # 0
with Aw=xwandAx = Ax and (x,u) = 0. From the
above we see that we may also assume that w and x
are strictly positive. But then (w,x) > 0, which is a
contradiction.

For the proof of the converse, let w be a strictly posi-
tive unit vector spanning the eigenspace. Letu =0
and v = 0 be nonzero vectors. Write v = x + w, vyw,
so that {(x,u) = 0. Then A7y = Arx + \*™w, v)w, SO

A Mu, Ary = A ™u, Anx) + (u,w){w, v). Since x is
orthogonal to the eigenspace corresponding to A, and
since our assumption that A > 0 excludes the possi-
bility that — A is an eigenvalue, the spectral theorem
implies that (u, (A/A)"x) = 0 as n >, Since (u,w)
w,v) > 0,it follows that A~*u, A" v) > 0 for some n
sufficiently large.

Remark: The example of the matrix A = (9 })
acting in R2 shows that A may be positivity preserv-
ing and ergodic, and yet — || A|| may be an eigenvalue,
Of course, this A is not positive, since its eigenvalues
are+ 1,

Corollary 1.1: Let X C X be a Hilbert cone. Let
H be a self-adjoint operator acting in ¥. Assumethat
there exists an eigenvalue p of H with H > p. Assume
that (H + ¢)™! is positivity preserving for some ¢
with ¢ + p > 0. Then (H + ¢) ! is ergodic if and only
if p is an eigenvalue of multiplicity one and the cor-
responding eigenspace is spanned by a strictly posi-
tive vector.

Proof: SetA=(H + cy’'. ThenA = 0, [A]
(w+ cyl,and Aw= (u+ ¢) 1w if and only if Hw

i

L.

Proposition 2: Let X C X be a Hilbert cone. Let
H be a self-adjoint operator which is bounded below.
Then exp(— {H) is positivity preserving for all ¢ =0
if and only if (H + ¢)™1 is positivity preserving for all
¢ sufficiently positive.

Proof: This equivalence follows from the formula
H+ c)lo= fooo exp(— ct) exp(— tH)vdt
and the inversion formula

exp(— tH)v = lim (1 + (¢/n)H) "v.

n —>o0
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Definition 4: Let X C ¥ be a Hilbert cone. Let H
be a self-adjoint operator acting in J¢ which is bound-
ed below. Assume that exp(— ¢H) is positivity pre-
serving for all ¢ > 0. Then the family exp(— tH), { =0
is an evgodic semigroup if for allu 20, v 20, u = 0,
v # 0, there exists ¢ = 0 with («, exp(— tH)v) > 0.

Proposition 3: Let X C X be a Hilbert cone. Let
H be a self-adjoint operator which is bounded below.
Assume that exp(— ¢H) is positivity preserving for all
t 2 0. Let ¢ be a real number such that — ¢ is less
than the lower bound of H, Then exp(— ¢{H) is an ergo-
dic semigroup if and only if (H + ¢)™! is positivity
improving.

Proof:

{u,(H + ¢)"lo) = fooo exp(— ct) (u,exp(— tH)v) dt.

Corollary 1.2: Let X C X be a Hilbert cone, Let
H be a self-adjoint operator acting in ¥. Assume that
there exists an eigenvalue p of H with H > . Assume
that exp(— tH) is positivity preserving for ¢ = 0. Then
exp(— tH) is an ergodic semigroup if and only if p is
an eigenvalue of multiplicity one and the correspond-
ing eigenspace is spanned by a strictly positive
vector.

Proof: SetA = exp(—H). Then 0 < A <| Al =
exp(— (). The Perron—Frobenius theorem (Theorem
1) remains valid if the definition of ergodic is modi-
fied to allow nonintegral powers of A, as in the defini-
tion of ergodic semigroup. But A! = exp(— (H).

The notion of ergodic semigroup may be used to im-
prove Corollary 1.1.

Corollary 1.3: Let X C X be a Hilbert cone. Let
H be a self-adjoint operator acting in J¢. Assume
that there exists an eigenvalue p of H with H = p.
Assume that (H + ¢)! is positivity preserving for all
¢ with ¢ + ¢ > 0, Then (H + ¢)~1 is positivity improv-
ing if and only if g is an eigenvalue of multiplicity one
and the corresponding eigenspace is spanned by a
strictly positive vector.

Proof: Since (H + ¢)! is positivity preserving for
all ¢ sufficiently positive, exp(— ¢H) is positivity pre-
serving for ¢ = 0, by Proposition 2.

Assume p satisfies the multiplicity condition. Then
exp(— {H) is an ergodic semigroup, by Corollary 1. 2.
Thus using Propositios 3 we see that (H + ¢)1 is
positivity improving.

The other direction is a special case of Corollary
1.1.

4, PERTURBATION THEORY

Theorem 2: Let X C X be a Hilbert cone. Let H
be a self-adjoint operator acting in & which is bound-
ed below. Let V be a self-adjoint operator which is
relatively bounded with respect to H, with relative
bound less than one. Set H =H, + V. Then H is a
self-adjoint operator which is bounded below. Assume
that (H, + c)! is positivity preserving and ergodic
for all ¢ such that ¢ + inf spectrum H, > 0. Assume
also that — V is positivity preserving, in the sense
that it sends elements of X which are in its domain
into X. Then (H + ¢)™1 is positivity preserving and
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ergodic for all ¢ such that ¢ + inf spectrum H > 0. If
(Hy + ¢)1 is, in fact, positivity improving, then so is
(H+ o)1,

Proof: Let v = inf spectrum H,. We consider real
numbers c¢ such that — ¢ < v. Since V is relatively
bounded with respect to H, with relative bound less
than one, it follows that || V(H, + ¢)"1| < 1 for ¢ suf-
ficiently large. Hence (H + ¢)'1 = (Hy + ¢)123.2,
[~ V(H, + ¢)"1]" converges for these ¢. Thus H is
self -adjoint and bounded below. It also follows im-
mediately from this series representation that
(H + c) ! is positivity preserving.

Let y = inf spectrum H. We now know that there
exists a ¢ with — ¢ < g and (H + ¢)-1 positivity pre-
serving. Consider a d < ¢ such that —d < p. Then
(¢ —d)H + ¢)"! has norm (¢ —d)}{c + p)"1 < 1. So
(H+dyl=H+cy12 " [(c—ad)H + ¢)1]* is also
positivity preserving.

We next show that (H + ¢)™1 is ergodic for ¢ suffici-
ently large. In fact, we may write

H+cyt=(Hy+c)yl+ T,

where T = — (Hy + ¢)"1V(H + ¢)"1 is positivity pre-
serving. Letu and v be nonzero vectors in X. Then
there exists »# > 0 with {u, (H, + c¢)"v) > 0. Since
(H+ c)y»=[(Hy + c¢)1+ T]*,we also have

(u, (H + c)™v) > 0. [In case (H, + ¢)1 is positivity
improving, we may take » = 1. Thus (H + ¢)! is also
positivity improving.]

Finally, we show that (H + d)! is ergodic whenever
—d<p. Infact(H+d)1=(H+ ¢)l + S,where § =
(c —d)H + d)2, If d < c then S is positivity preserv-
ing. Since (H + ¢)! is ergodic, (H + d)! is also.
[And if (H + ¢)-1 is positivity improving, then so is

(H + d)l.]

Remark: This theorem applies in particular when
V is bounded, and the result is independent of the
magnitude of the bound. For then |[V(H, + ¢)1| <
I1VIHiH + )y = I VI(v + €)1 <1 for ¢ sufficiently
large.

The following theorem is an abstraction of results of
Glimm and Jaffe? and Segal.”

Theorem 3: Let X C X be a Hilbert cone. Let H
be a self-adjoint operator acting in ¥ which is bound-
ed below. Let V be another self-adjoint operator
such that # = H, + V is essentially self-adjoint on
D = D(Hy) N D(V) and is bounded below. Assume also
that the restriction of H, to D is essentially self-
adjoint. Let V, = V when |V | <k, 0 otherwise.
Assume that exp(— tH,) is a positivity preserving and
ergodic semigroup. Assume also that exp(—¢V,) is
positivity preserving for all ¢ and all k. Assume
finally thatu =20, » 20, (u, v) = 0 implies
(exp(— tV,m,v) = 0. Then exp(— {H) is a positivity
preserving and ergodic semigroup.

Proof: LetH,= Hg + V,. Then by the Trotter
product formula,8 exp(— ¢H,)u = lim[exp(— {/nH,) X
exp(— t/nV,)]"u for u in 3 as n —» ©. Thus exp(— tH,)
is positivity preserving. Now V,u — Vu for  in D,
and D is a core for H. Thus exp(— tH,)u — exp(— tH)u
for » in 3C.2 Hence exp(— tH) is positivity preserving.
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Let v>0, v # 0. Let X(v) = {u = 0:(u, exp(— tH)v) =
0 for all ¢ = 0}. To show exp(— ¢H) is an ergodic
semigroup it is sufficient to show that X(v) = {0} for
all such v.

First of all, note that X(v) is a closed cone and that
exp(— {H) leaves X(v) invariant. But also exp(tV,)
leaves X(v) invariant. For if u > 0, v = 0, and

(u, exp(— tH)v) = 0, then by assumption {exp({V,)u,
exp(— tH)v) = 0. Thus from exp[— #(H — V,)Ju = lim,
[exp(— t/nH) exp(t/nV,)]"u, we see that exp

[~ t(H — V)] leaves X(v) invariant. But D is a core
for H, so exp[— t(H — V,)]u = exp(— tHy)u. Thus
exp(— (H,) leaves X(v) invariant. In particular, if

u € X(v), then (exp(— tHy)u, v) = 0. Thus u = 0, since
exp(— tH,) is an ergodic semigroup.

In applications of Theorems 2 and 3 it is not neces-
sary that H, has an eigenvalue. In fact it is often
possible to see that exp(— tH,) and (H, + ¢)'1 are
ergodic by inspection.

As an example of this perturbation theory we may
take the quantum mechanics of # nonrelativistic par-
ticles. This application has previously been consid-
ered by Simon and Hgegh-Krohn1© and the author.t!
In this case I = L2(R3”",dx) and X is the cone of
positive functions. We take H, = — A; an explicit com-
putation shows that exp(— /H,) is convolution by a
Gaussian for ¢ > 0, Thus exp(— ¢H) is positivity im-
proving for ¢ > 0. It follows that (H, + ¢)! is posi-
tivity improving for all ¢ > 0.

For the interaction term we take a real function V on
R37 which is a finite sum of functions V,, of the form
Vo(xqyy...,%,) = W(2,), where the coordinates z,...,
z,are related to x;,...,x, by an affine transforma-
tion. The function W, is required to be in L?(R3) for
some p with 2 € p < o, It is known that in this case V
is relatively bounded with respect to H, with relative
bound zero, 8,12

SetH =H,+ V. If Vis bounded above, then there
exists a constant b such that H —b=H, + (V —b)
and V — b is negative, Thus we may apply Theorem 2
and conclude that if A has a ground state, it is unique.
This argument would generalize easily to perturba-
tions which are given by an integral operator with
negative kernel. In order to remove the restriction
that V is bounded above, we may use Theorem 3 in
place of Theorem 2. However, this argument would
not generalize to perturbations given by integral
operators.

5. THE SEGAL REPRESENTATION OF THE ANTI-
COMMUTATION RELATIONS

In the application of the Perron—Frobenius theory to
quantum field theory,2.7.10 the natural representation
of the boson Fock space is the L2 representation in

which the field operators are multiplication operators.

The cone is then taken to be the cone of positive func-
tions in L2, For the fermion case the situation is not

s0 simple; the fermion field operators do not commute.

However Segal4 has given a representation of the
Fock space for a fermion system in which the field
operators become left multiplication operators on a
Clifford algebra. This turns out to be the natural
analog of the boson representation.

Let Ebe a complex Hilbert space. The C*-algebra of
the canonical anticommulation relations is the C*-
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algebra generated by elements 1 and A(x), x € E,with
the relations

A(x)A(y) + A(9)Alx) =0
and
AXA(* + A(9)*Ax) = (x, y).

Here A(y)* depends linearly on y € E. [The inner
product is taken to be linear in the right factor. Thus
A(x) is conjugate linear in x.]

The norm on a C*-algebra is uniquely determined:
The norm of an element u is the spectral radius of
(u*u)1/2, The C*-algebra of the anticommutation re-
lations is discussed in detail by Shale and Stine-
spring.13

Let J:E — E be a conjugation. Write Q(x) = A(Jx) +
A(x)* and iP(x) = A(Jx) — A(x)*. Then

RI)R(y) + Q(¥)Qx) =2, ),
QUIP(y) + P(»)Qx) = 0,
P(x)P(y) + P(y)P(x) =2(x, y),

where (x,y) = (Jx,y). Also Q(x)* = Q(Jx) and P(x)* =
P(Jx). Thus the C*-algebra of the anticommutation
relations may also be viewed as the Clifford algebra
C(E @© E) generated by the Q(x) and P(y). (In Shale
and Stinespring's treatment!3 the algebra is taken as
the Clifford algebra over the real subspace of E @ E
defined by J. Their conjugation A is notdJ; it is the
one reversing the roles of @ and P.)

Lete,e,,e5, -+ be an orthonormal basis of E con-
sisting of real elements. Let @(7) = Q(¢;) and P(j) =
Pe;). The anticommutation relations then read
Q()Q () + Q(DQ(7) = 25,,, etc. The Clifford algebra
C(E @ E) is generated by 1 and the self-adjoint ele-
ments Q(7) and P(j).

For the construction of the Segal representation we
need some facts about states on C*-algebras. Let @
be a C*-algebra with identity. If u € @, « is said to
be positive if there exists v in @ with u = v*v. Though
it is not obvious from this definition, the positive ele-
ments of @ form a cone,14 A linear form w on @ is
called positive if u = 0 implies w(u) = 0. A state on @
is a positive linear form such that w(1) = 1. A state
is called a central state (or trace state) if w(uv) =
w(vu) for all u, v € G. A central state is called faith-
Sul if u 2 0, w(u) =0 implies u = 0.

There is a standard way of representing an algebraby
linear transformations, which applies in particular to
the case of a C*-algebra G. If u € G, definethe linear
transformation L, : @ > Q@ by L, v = uv, Similarly, de-
fineR, :@ = G by R, v = vu. Let w be a state on Gand
consider the form (u, v) = w(u*v). Then the adjoint-

ness relation {( L,v,w) = (v, L, *w) is valid. The cor-
responding statement for R is false in general. Butif
w is a central state, then (R, v,w) = (v,R,*w) holds.

If we write [[v]|3 = (v, v), then [|Lvll, < llul_lvll,,
where |lull  is the norm in the C*-algebra Q. [Infact,
w(v*u*uv) < w(v*ful2) = [|«ll2 w(v*v).] If w is cen-
tral then we also have ||R, vll, < [ul llvl,.

We apply this construction to the Clifford algebra

C(E) generated by 1 and the Q(x), x € E. [This alge-
bra is in fact generated by 1 and the Q(7).]

Proposition 413: If the dimension of E is even or
infinite, there is a unique central state w on C(E).
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It is not difficult to see why this is so. Consider the
elements Q(/) = Q(7;)- - +Q(7,) of C(E), where I =
(¢y.+.,%,) and 4; < ---<i,, The convention here is
that (@) = 1, where @ is the empty sequence of in-
tegers. It is enough to show that « is determined on
the Q(I). Of course w(@(@)) = w(1) = 1.

Hi1=@, let!l’ = (iy,...,%5). If kis even, then Q(I)=
Q(i)Q(I') = —Q(I")Q(4,). Since w is central, w(Q([))
= 0. If £ is odd, and the dimension of E is even or
infinite, there exists an index j which does not belong
to 1. Then Q(I) = — Q(j)Q(1)Q(j). Since w is central,
again w(Q(/)) = 0. From this we see that if u = ;¢
Q(J), then w(u) = c¢,. It follows easily that w(u*u) =
2ule 12 =0,

Definition 5: The principal automorphism of €(E)
is the unique automorphism B such that BQ(x) =

Q(—x).

The automorphism B is + 1 on the even elements and
- — 1 on the odd elements of the algebra. Clearly B2 =
1.

From now on we assume that the dimension of E is
even or infinite. Let w be the central state of C(E).
Define the inner product (¥, ) = w(u*v) on C(E). Let
W be the Hilbert space which is the completion of
C(E) with respect to this inner product. The opera-
tors L, and R [u € C(E)] extend to this completion.

The principal automorphism B leaves w invariant.
Thus B extends to a unitary transformation B: W —
W. Since B* = B~1 = B, B is also self-adjoint,

Definition 6: The Segal representation m of
C(E ® E) is the representation by operators on the
Hilbert space W [the completion of C(E) given by the
central state w] determined by

Q%)) = Lyy
and
(P(x)) = iRg(y B

B2 =1, so this is indeed a representation. Since also
B = B*, it is in fact a * representation.

Proposition 5: The Segal representation is uni-
tarily equivalent to the Fock representation.

Proof: Let Q, € W be the element 1. Let w, be
the state of C(E & E) defined by wq(u) = (2, 1(#)Q) .
We use the identities (valid for x real) A*(x)A(x) =
3(lxl12 — iP(x)Q(x)] and @ (x)2 = [lx]|2 to evaluate
wo(A*(x)A(x)). We obtain wy (A *(x)A(x)) = (R, T(A *(x)
A(x)9y = 3w(l|x|2 —Q(x)2) = 0. Thus, by a theorem
of Shale and Stinespring,13 w, is the Fock vacuum
state of the canonical anticommutation relations.

6. THE GROSS CONE

The Segal representation allows us to exhibit a cer-
tain cone, one which is not a cone of positive functions.
The discovery of Gross was that this cone may be
used to obtain spectral properties of operators acting
in the fermion Fock space.

Let @ be a C*-algebra with identity and let w be a
faithful central state on @. Define the inner product
{4, v) = w(u™v) on G@. Let W be the Hilbert space
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which is the completion of @ with respect to this
inner product.

Since w is central, (u*, v*) = w(uv*) = w(v*u) =
(v,u). Thus the adjoint * is anti-unitary and extends
to a conjugation on W,

Let X be the real subspace of ‘W corresponding to
this conjugation. Then ¥ is the closure of the self-
adjoint elements of the C*-algebra G.

Definition 7: Let @ be a C*-algebra with identity,
and let w be a faithful central state on @. Let 3 be
the associated real Hilbert space. The positive cone
X C X is the closure of the cone of positive elements
of &.

In the case where G is the C*-algebra of the canoni-
cal anticommutation relations, we will call X the
Gross cone.

Proposition 6: Let @ be a C*-algebra with iden-
tity, and let w be a faithful central state on @, Let X
be the associated real Hilbert space and let X C X
be the positive cone. Then X is a Hilbert cone.

Proof: We must show that properties (5) and (6)
of the definition of a Hilbert cone are satisfied.

Property (5) states that if u € X, v € X, then (4, v) =
0. This is obviousif u,v € @, since then the centrality
of w implies that (u, v) = w(uv) = w(W/24v1/2) > 0,
The result extends by continuity to all #, v € X.

Property (6) is the decomposition property. It is
knownl4 that if « is a self-adjoint element of a C*-
algebra @, then there are positive elements »* and u~
in@ withu =u* — 2 and u'u- = 0. We set |u|l=u*+

u-.

Lemma 1: w(uv) < w(|u]||v]), for all self-adjoint
elements u, v € Q.

Proof: Setu = pq and v = rs, where |u| = p2 = g2
and |v| = ¥2 = s2. Then
w(uv) = w(pgrs) = w(spqr)
< w(pssp)V/2w(rqqr)V/2 = w(p2s2)1/2w(q2r2)1/2
= w([u] [v]).

Lemma 2: Set {ull = w?2), Then |[|lu]| — |v]]l, <
lu — vlly for all self-adjoint elements u, v € G.

Proof: This follows immediately from Lemma 1.

Thus we have shown that |u| depends continuously on
u in the Hilbert space sense. It follows that »* and u~
depend continuously on u. Thus the decomposition
property extends from the space of self-adjoint ele-
ments of @ to its closure JC.

Proposition 7: The vector 1 is strictly positive.
Proof15:  Consider a vector u = 0 such that (u, 1)
= 0. We must show that u = 0,

Since u € X, u = 0, there exists a sequence of u, € @
with %, = 0 such that u, = u. We have (u,,u,) =
Wuyu,,) = @l 2u,ul?) < |u,ll ow,) = lu,ll,
(#,,,1). Fix n and let m — ., We see that (u,,u) =< 0.
Now let n —> 0, It follows that (u,u)=<0, so u = 0,
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7. A CLASS OF FERMION INTERACTIONS

In quantum field theory a system is described by a
Hamiltonian H = H, + V, where H, is the kinetic
energy of the particles that are present,and V is an
operator which creates or destroys particles. In the
case when the particles are fermions, the creation
and destruction operators obey the canonical anti-
commutation relations.

The operator H, may be characterized as follows.
Let @ be the C*-~algebra of the anticommutation re-
lations [generated by 1 and the A(x), x € E] repre-
sented by operators on the Hilbert space W. Assume
the representation is unitarily equivalent to the Fock
representation. Let &, € 'Wbe the Fock vacuum. If
u is a self-adjoint operator actingin E, thenthereisa
unique self-adjoint operator H, acting in ‘W such that
exp(i#H ) A(x)* exp(— iH ) = A(exp(itp)x)* and H R,
= 0. If p is positive, then so is H ;.

One important example is when p has discrete spec-
trum. Let p =27, u,%, < x,|, where for each & p, is
a real number and x, < x, | is the projection onto the
space spanned by the vector x, € E. (The x, are
taken to be orthogonal.) Then the corresponding H, is
given explicitly by H, = 2;,u, A(k)*A(k). [Inthis equa-
tion and in the following we write A(k) for A(x,).
Similarly we will write Q(k) for Q(x,) and P(k) for
P(x,).]

Proposition 83: LetdJ:E — E be a conjugation.
Let p be a positive self-adjoint operator acting in E
which is real (that is, commutes with J), Assume that
zero is not an eigenvalue of p. Let H, be the corres-
ponding self-adjoint operator acting in ‘W. Then
exp(— tH,), t = 0 preserves the Gross cone and is an
ergodic semigroup.

It follows from this proposition that (H, + ¢)! is
positivity improving when ¢ > 0,

The first part of Proposition 8 is easy to verify ex-
plicitly when p has discrete spectrum. In that case
exp(— tHy) = I1, exp[— tin, A(R)* A(R)]. 1t is thus suf-
ficient to show that exp[— fN(k)] is positivity preserv-
ing, where N(k) = A(k)*A(k). Since N(k)2 = N(k), we
may evaluate exp[— {N(k)] = 1 + [exp(~ ) — 1] N(k).
But N(k) = A(k)*A(k) = 3[1 + iQ(k)P(k)]. Thus in the
Segal representation

exp[— tN(k)]u = u + [exp(— £) — 1]a[u — Q(k) (B) Q(%)]
= 3[1 + exp(— t)]u + 3[1 — exp(— £)]Q(k)(Bu) Q(%).
From this expression it is evident that if « > 0, then

exp[— tN(k)Ju = 0. The general case follows by an
approximation argument,3

The second part of Proposition 8 follows from Corol-
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lary 1.2, In fact, since zero is not an eigenvalue of p,
it follows that zero is an eigenvalue of H, of multi-
plicity one with eigenvector ©,. In the Segal repre-
Sentation, £5 = 1. But 1 is a strictly positive vector,
by Proposition 7. So exp(— tH,) is an ergodic semi-
group.

Theorem 4: Let @ be the C*-algebra of the anti-
commutation relations in the Segal representation by
operators on the Hilbert space W. Let X be the real
subspace of W and let X C JC be the Gross cone.

Let u be a self-adjoint element of @ and let V =
—L,R,.SetH=Hy,+ V. Then if H > X and HQ = A,
§ # 0, then some complex multiple of Q is strictly
positive and A is an eigenvalue of multiplicity one.

Proof: Since (H, + c¢)-!ispositivity improving and
— V is positivity preserving, it follows that (H + ¢)-!
is positivity improving for ¢ sufficiently large. Thus
A is an eigenvalue of multiplicity one and the corres-
ponding eigenspace is spanned by a strictly positive
vector.

In the work of Gross3 a similar result is obtained for
V of the form V=L, + R,, u = u*. In applications
these results state that the ground statefor afermion
system described in Fock space in unique. In the
case of an interaction V which leaves unchanged the
number of particles the ground state of H = Hy + V
would be the no-particle state Q,. (The Hamiltonian
H restricted to an n-particle space may well have a
degenerate ground state!) Thus these results are
significant only when the interaction creates or de-
stroys particles.

It is thus fortunate that the interactions considered
here may create and destroy particles. For example,
let x, be mutually orthogonal real unit vectors in E,
and set u = @i Q(x,)Q(x,) + b, where a and b are real
numbers. We shall see that the operator V=—L R,
contains pair creation and annihilation terms.

In the Segal representation @ (%) is represented by
Low a:nd P(k) is represented by iR, B. [Here again
we write Q(&) for Q(x,), etc.] Thus L, represents
ai@(1)Q(2) + b,and R, represents aiP(2)P(1) + b. So
V=— L, R, represents

a2Q (1)Q(2)P(1)P(2) — ab[Q(1)Q(2) + P(2)P(1)] — b2
= a2[2A(2)*A(2) — 1][24(1)*A(1) — 1]
— 2iab[A(1)*A(2)* + A(1)A(2)] — b2.

Notice that the pair creation and annihilation terms
are the same as those arisingin quantumfield theory.
In fact, Gross was able to apply his theory to the
Hamiltonian H = Hy + Mi[A(1)*A(2)* + A(1)A(2)] and
derive a uniqueness result for a field theory Hamil-
tonian with cutoffs but for arbitrary coupling con-
stant A.
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A mathematical method for approximating the solutions of the one-dimensional Schrddinger equation is sug-
gested which leads to a classification scheme identical to that of “classical turning points.” In this paper prob-
lems with at most two classical turning points are studied. Physical examples are chosen in such a way as to
clarify especially the role of complex conjugate turning points and of others which do not belong to the physical
region of the position variable. It is shown that, in general, those turning points must be taken into account and
can be neglected only if their distances from the physical region of the position variable, as measured in units
of a local wavelength, is large. The problem with three classical turning points, which turns out to be of special
importance for intermolecular and internuclear forces will be treated in a later paper.

1. GENERAL PROBLEM

The solutions of the one-dimensional Schrédinger
equation

d2y
X +K2 =0,
age TR
shall be approximated by functions of the form
- dx\ -1/2
50 = (&) v, x =00, @
43
where the position variable is called §. It is the pur-

pose of the approximation method to construct v(x)as
a solution to another differential equation

2
3;12) +[p (%) + py(x)]v =0 (3)

with appropriately chosen functions p; (¥), py(¥). Upon
inserting (2), (3) transforms into

L0 [(2) paen + (L) vt + 1 s0)]5 = 0

K2() =E— Ve (6) (1)

dg2 d
3 § (3a)
which can directly be compared with (1). The term
dx\ /2 42 [/dx\ ~1/2
s <d§> d&z[(dé) } “

is called a Schwarz derivative and tends to infinity as
(dx/d¢) tends to zero. In order to get suitable approx-
imations, the following requirements are imposed:

(a) (3) should be exactly solvable;
®) (&) o0 = K260
dge) "t ’

(c) <Z_Z>2 pgy(x) + 2{x; £) should be free of poles in &.
These will be discussed in the following, First of all
the zeros of K2(¢), which from now on are called clas-
sical turning points (or simpler turning points) and
the choice of p,(x) determine the zeros of (dx/d§)
[see requirement (b)] which lead to poles of the
Schwarz derivative. The choice of p,(¥) moreover
defines, through requirement (b), the variable x in
terms of £. The function p,(¥) should then be chosen
so as to fulfill requirements (c) and (a). The approxi-
mation method will first be tested on problems with
0,1, or 2 turning points,

2. PROBLEMS WITH 0 AND 1 CLASSICAL
TURNING POINTS

All requirements (a), (b), (c) can be satisfied by
choosing
pL¥=1, x= fgj K(s)ds,

po(¥) =0, or py(¥) = [(@2 + da)/4(a + 2)2] (1/42).
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a = order of the zero of K2(&)

for problems with, respectively, no (or one, located at
£,) classical turning point. The differential equation
(3) in this case has no (or one, located at x = 0) regu-
lar singular point and one irregular singular point at
X = o, The approximation equation (2) becomes iden-
tical to the WKB-approximation in the first case (no
classical turning point) and to Langer's extension in
the second case (one classical turning point of order
a). These approximations will not be discussed
further in this context because they have been treated
extensively in the literature (see, for ex.,Refs. 1-3).

3. PROBLEMS WITH CLASSICAL TURNING POINTS
AT ¢, AND ¢,

Accepting the form

Py (*) = (1 —u2 — c2)/4x2 )
for p,(x) and choosing

p1(x) =1+ (2ik/x) + (c2/4x2), (6)

Eq. (3) becomes the most general differential equation
with one regular singular point at x = 0 and one irre-
gular singular point at x = ©;

2 ; 2
d% + {1+ il +1=p v=20 (7
dx2 X 4x2

which explicitly satisfies requirement (a).

The constants are chosen so as to make this equation
identical with Kummer's equation as given in Ref. 4.
The case of a single second-order zero of K2(¢) (o =
2}, that is, two coinciding turning points, can be ob-
tained again by choosing

K:C:O, x(gl)zx(gz):o,

For the case of two turning points it is, therefore,
tempting to try now the ansatz

1
k=0, p2 =g,

£, 7 £, (8)

which, through requirement (b), would satisfy require-
ment {¢) as can be seen from the fact, that the only
zero of (dx/d&) and, therefore, the only pole of the
term 3 (x; £) is located at x = 0, cancelling the pole
of (dx/dE)2p,(x). It is not yet proved, that the values
x(E1),x(¢,) as fixed by Eq. (8) coincide with the values
%(&4),%(¢,) as fixed by the function x(£), which again
is determined by p,(¥) through requirement (b) [see
also Eq. (17) below],

C:O, x(§1)=x(£2)=_2z’<1

J. Math. Phys., Vol. 13, No. 8, August 1972



1292

The mathematical goal, stated by (a)-(c) would thus
be reached for this case too, if the above formulas
could be made compatible with (b). That this is pos-
sible will be shown by working out physical examples.
These will be chosen so as to get further insight into
the physical content of the aforementioned concepts
and the usefulness of the approximation method.

First, for the special cases V(r)= 0 and V(r) =
const/7, I # 0 (both problem with exactly two turning
points if I # 0), requirements (a)—(c) could be fulfilled
and would lead to the exact solution of the correspond-
ing radial Schrédinger equations by simply taking

¢ # 0. However, in order to calculate the harmonic
oscillator exactly (also a problem with exactly two
classical turning points), energies of bound states, the
penetration through potential barriers and the exam-
ple below approximately, we shall use Egs. (8). In all
these cases it is necessary to fix the branch of the
multivalued function K(¢) which shall be done by tak-

ing
ﬂ} for {g > 82 (9)
T £<§&,

for the case of Fig.1 (energies of bound states).

arg K(§) =

(I ST

In a similar manner we take

j£> £y
le<e,’

for the case of Fig.2 (penetration through potential
barriers). The last formula is valid for the case

E < V_,, only, which guarantees real classical turn-
ing points.

The opposite case E> V. leads to complex conju-
gate turning points and brings in a new difficulty
which will first be discussed by specializing K2(£)
to be

arg K(§) = ﬂ} E< Vi (10

K2(€)= Q& —£1) (8 —&p)
0 [E—E)2 + (§— E)RE — &y — &p)
(5 EE — £5)] (11)
VIE)
& E &

FIG. 1. Energies of bound states.

V(g)
Vmax
E 1 i 2 s
§1 \ E,'L E.z! FIG.2. Penetration through
| ! T potential barriers.
| ) |
) \ : 1
K*(E) Lo '
Nt v
!
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with constant (or slowly varying) ¢ and an arbitrary

constant £. The function K (£) then has a branch cut in
the complex § plane running from £, to {,. Require-
ment (b),

(G +2) -

can then be satisfied by choosing

x=3Vp (&~ £)2, (12)
20K = % ‘/E(Z - 51)(2 - ‘52), (13)
E—3(E, +£,) =20 (14)

Equations (12) and (13) automatically satisfy x(¢,) =
%(kE,) = — 2ik [see Eqgs. (8)]. A distinction has been
made in Eq. (14) which is relevant for complex conju-

gate turning points only, that is,for E> V, ... The
new situation can be studied by taking
— + =40
arg(§ — §,) = 23 Wlfor{ 2y + 55) ;
+3nf JE— (g +E) =—0
in
arg(f — &,) = f for £ — 3(k, + &) =+ 0,  (15)
2

which leads to the following choice of signs of K(£) on
the two rims of its cut:

argK (¢) = 01 for {£“§(§1+§2)=+0, > Vi
”5 £~—-%(§1+§2)=—0 x
(107)

instead of (10). Since k is defined in terms of £ which
according to Eq. (14) may be situated on either side
of the cut, it seems quite natural to now choose the
upper or lower sign in Eq. (14) according to whether
Kk is inserted into a wavefunction with coordinate ¢ on
the right or on the left side of the cut, respectively.

Summing up, (9), (10), and (10’) finally lead to the
assignments

e-in/2 |K |
) el3/2)in |

fE<V

max

£> 5 (&, + £9)]

for a wave with {

£< (g, + &)

K = ein/2|g| (16)

which, together with (10’) remain valid also in the

general case where ¢ is allowed to be any regular
function of £ without zeros. Formula (12) then be-
comes a special case of the integrated form of re-
quirement (b),

ST+ @ik/u)|V2 du = (82 + 2ikx)1/2

+ ik In(l + {[x +(x2 + 2ikx)V/2]/ik}) = fg s)ds,

(17 )

where the multivalued functions are fixed according
to (9), (10), (10’) and
\[eia —_— eia/2 .
The generalization of (13) can be obtained by insert-
ing

*(£,) = et"(2ik),

In(eie) = ia, (18)

%(E5) = €77 (2iK) (19)

into (17). This remains true in the case E> V] .,
only if k¥ appears in a wavefunction with £ > 3 (gl + £5)
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otherwise Eq. (19) should be replaced by
(Eq) = eiT@iK),  X(E,) = eiT(2iK). (20)

None of the formulas (19), (20) therefore contradict
requirement (b). They also check with Egs. (8), even
in the general case, and, therefore, automatically
satisfy requirement (c). Inserting either one of them,
(17) finally lead to

IKI—I | o K(s)ldsl—l ng

which should be read in connection with (16). The
constant [«| can thus be interpreted as a distance
between the two classical turning points, measured in
units of an “effective wavelength’” which itself depends
oné,

Arguments quite analogous to these given in Sec. 4
(see the following example) now lead tothe well-known
transmission coefficient

D= [1 + exp <i 2 ‘ fgjz K(s)lds I)j"l

and to a formula for energies of bound states

[ K@s)as =1 +3), n=0,1,2,...,
1

K(S)ldSl

for £ £V,

max

which can also be inferred from Langer's method.
Inspite of the fact that new aspects of these approxi-
mations could be obtained (based on the new mathe-
matical method used here), they will not be discussed
further in this context.

As a preliminary result, it can be stated that there
are “classical turning points” which are not contained
in the physical region of £ and which nevertheless
play an important role for the above approximation
method. In order to discuss this point further,
another problem with two classical turning points
will be examined.

4, s-WAVE SCATTERING FROM REPULSIVE
POTENTIALS WITH ZERO SLOPE AT THE
ORIGIN

For the function now required

K2(r) = 2m/H2[E - V(r)], E> 0,

a figure can be drawn which agrees with the right
side of Fig.2, the physical region ¥ > 0 correspond-
ing to the region ¢ = £ in Fig. 2, At first sight there
seems to be no reason for taking into account the
region £ < £ too, corresponding to the “unphysical”
region 7 < 0, Remembering that there is a classical
turning point in this region it nevertheless seems
tempting to use the above formulas, valid for prob-
lems with exactly two turning points. A full justifica-
1

°g+(K)exact
£, (K)WKB
x/2_1r exp[— 3i(b — VI + b2

+b2) — k](K)*" V% V27 exp[3i(b + Vi + b2) — k] -[e-iv/2VL + b2
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tion for doing so will be given by the discussion be-
low.

In order to get the regular wavefunction from the
general solution

. dx\-1/2
u(r) = <a%> [AW,, 174 (26%) + BW., ,, (2i%e7T)] 22)

which can be inferred from Egs. (2) and (7), the con-
stants A, B must be chosen so as to get

50 =0 Z@o-=1. @23)
dr
From the asymptotic expansion
= (1/2ik)[£_ (k) et*" — L, (k) e k7], (24)
one may then read off the Jost function
L.(k) = |£,(k)| 10 (25)

which can be used to get the s-wave phase shift (k).
[We are using Jost functions with the phase conven-
tion of Newton (see Ref.5)]. The relevant calculations
are made in the Appendix which lead to

£.(k) = V27 [((k)**1/4e7x)/T G + k)], (k)VEE. (26)
In this result, we have denoted by
2.()VER = | £, () YEB| exp [— 10 (k)VEB]

= lim (K (0)/K(0))1/2

« exp[ﬁ z( 7 K(s)ds— K(co)R)] @7)

the Jost function [and by 6(k)WKB the corresponding
s-wave phase shift] which is obtained in the WKB
approx1mat10n for E>V and from Langer's exten-~

sion for £ < V, ..

max

As a special result it turns out that the difference

b (k) — 6(R)WKB which can be inferred from (26) is a
function of « only (independently of other characteris-
tics of the potential and in contrast to the following
example) and tends to zero as |k | » «,

The phase 6 (k)¥XB does not take into account the turn-
ing point (s) outside the physical region of the coordi-
nate. Interpreting the above result we may say that
the turning points lying in the unphysical region of the
position variable can be neglected if their “distance”
to the physical region of the position variable be-
comes large.

It is interesting to test Eq. (26) on the special example

V{r) = @i2/2m) [a2(5x + b2)/cosh2a¥], a,b = const,

(28)
which can be solved exactly (Ref. 6). The Jost func~
tion in this case,.

b2 + k] V7707 kr(1/D)

T[§ + &+ 3i@ —VE+ 0D T[Z + k — 34 (b + V5 + b2)]

I'(2x — iVl +82)

(29a)

* Var exp[iVI + 02 — 2] [2k + e~t7/2 T ¥ p2]2«-i VI/470Z -(1/2)

ik = (k/a)— \/%-I- b2

(29b)
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containg terms which depend on k and on the potential
characteristic b. It is thus difficult to compare with
the approximation formula (26).

However, until now, we have not taken into account the
fact that besides the classical turning points

Y2 =%7g, (30)

which are real for £ =V, , there are infinitely
many others, located at

ty,+imn/a, =122 ..., (31)
which are always complex for real a (these come in
through the periodicity of coshar). Therefore,
strictly speaking, the potential (28) cannot be used as
an example for problems with exactly two classical
turning points.

Still, remembering the above result, we may try to
eliminate the influence of the additional turning
points. It is easy to see that their distance d to the
physical region of the position variable tends to in-
finity if |a| tends to zero. However, in order to keep
« fixed we then must choose & appropriately, namely
b2>> ; [see Eq.(29b)]. In this way, the special exam-
ple (28) should reduce to a problem with exactly two
turning points. This is confirmed by the fact that the
exact formula (29) tends to the approximation formu-
1a (26) if b tends to infinity (for b > z we can insert
the asymptotic formula for the I'-function).

|

x1/4

W. HECHT

To sum up, suitable approximation formulas for solu-
tions of the one-dimensional Schrddinger equation
can be obtained by taking into account only those
classical turning points which are located “nearest”
to the physical region of the coordinate variable.
This general statement shall be further discussed in
later publications, where problems with more than
two turning points will be treated.

APPENDIX
The relation

r <1 ; B K)I“(I — W Wy (x) — e*in/2)(1-p)

1+ u
X F(T + K)F(l — ) W, o (re®tm)

m_ Az [F(%(l + W — k)T (1 — )
sinmp C(E(— ) — (1 + p)

grine. DA+ ) + )T (1 — ,1)]
T —p) + 00 + )

(A1)
valid for x| — 0, can be inferred from Buchholz (Ref.
4), Together with

x1/2(£) = L (2ik)1/2 -K(0)- & for & —E =0,

which can be inferred from Eq. (17), requirement (23)
leads to

- TE—Kk)T(s+x)  (A2)

V)= (

V2K (0) \ 47

as regular solution. The Jost function (26) can be
read off by inserting the asymptotic expansion of the
Whittaker function for the special case of Eqgs. (10},
(10")

We1/42i2) = 710 exp(—-z'fJK(s)ds) (a3)

¥ =0,
"‘7_&’1’/4(22'966'”) = giTK(gein)K exp(i for K(s)ds) (A4)

Here, the asymptotic expansions

dx)'l/z T(a—0) W 1/4@%) —e?T/AT G + ) W, 1/, (2ixe™T)
TG -G+ ) —ei"20 3 + k)T G — k)

f
(2ix)*retix = (keir)Tx exp(i ifg K(S)ds), £,
(A5)

which too can be taken from Eg, (17) has been used.
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